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The advent of 3D cell culture technology promises to enhance understanding of cell
biology within tissue microenvironments. Whilst traditional cell culturing methods have
been a reliable tool for decades, they inadequately portray the complex environments in
which cells inhabit in vivo. The need for better disease models has pushed the develop-
ment of effective 3D cell models, providing more accurate drug screening assays. There
has been great progress in developing 3D tissue models in fields such as cancer research
and regenerative medicine, driven by desires to recreate the tumour microenvironment for
the discovery of new chemotherapies, or development of artificial tissues or scaffolds for
transplantation. Immunology is one field that lacks optimised 3D models and the biology
of tissue resident immune cells such as macrophages has yet to be fully explored. This
review aims to highlight the benefits of 3D cell culturing for greater understanding of
macrophage biology. We review current knowledge of macrophage interactions with their
tissue microenvironment and highlight the potential of 3D macrophage models in the
development of more effective treatments for disease.

Introduction
Traditional 2D cell culture on stiff, flat polystyrene substrates has provided a broad depth of knowl-
edge on cellular processes, thereby increasing understanding of the human body and biology.
However, the emergence of technologies such as bioreactors and bioprinting now permits the addition
of a third dimension to these traditional culture methods. So far, three-dimensional (3D) cultures
have been highly utilised in cancer research to better understand the contribution of tissue environ-
ments to the mechanisms of tumorigenesis, thereby better replicating in vivo conditions to improve
outcomes in high-throughput drug screening assays. However, research fields such as immunology
have yet to fully utilise this technique. Immune cells occupy diverse 3D spaces in vivo which can
further change upon the infiltration of pathogens, inflammation, and tissue remodelling. Among these
immune cells, macrophages are present in all tissues and exhibit a vast range of functions important
for tissue homeostasis and host immunity. In this review, we discuss the environmental factors that
are important for macrophage function and phenotypes, and how this information could be consid-
ered in the design of 3D systems for better understanding of macrophage biology in vitro. We also
review recent studies which have utilised 3D cell cultures to investigate aspects of macrophage biology.

Macrophages
Macrophages are innate immune cells that are known for their ability to ingest particles in a process
known as phagocytosis. However, in the more than 100 years since their discovery, these cells are now
appreciated to be more than just eponymous ‘big eaters’ [1]. Macrophages are present within all
human tissues and have a plethora of phenotypes ranging from the phagocytosis and elimination of
invading pathogens to other processes which regulate essential homeostatic organ functions. One
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driver of macrophage phenotype is their developmental origin. During early embryonic development, waves of
macrophage precursors populate developing tissues and are then retained within specific niches where they
develop into macrophages focused on tissue-specific homeostatic operations [2]. These tissue resident macro-
phages (TRMs) have a capacity for self-renewal and persist within organs throughout the life of the organism.
The roles which specific TRMs play to maintain tissue homeostasis varies greatly depending on their respective
tissues. For example, brain TRMs known as microglia have roles in synaptic pruning, a process involving the
clearance of excess synaptic connections [3]. In the lung, TRMs known as alveolar macrophages are responsible
for surfactant clearance [4]. Osteoclasts are TRMs of the bone maintain bone density homeostasis, a process
which can lead to osteoporosis if disturbed [5]. These diverse, tissue-specific, tasks imply that signals from the
local tissue environment play a role in shaping TRM function.
In contrast, macrophages can be generated on command throughout adulthood from circulating hematopoi-

etic precursors. This is the more recognised origin of macrophages whereby hematopoietic stem cells (HSCs) in
the bone marrow develop into myeloid precursors and then Ly6C+ monocytes, which then travel throughout
the circulation until an injurious or inflammatory signal is detected from a tissue. In the presence of the cyto-
kine colony-stimulating factor 1 (CSF1), monocytes then infiltrate the tissue and differentiate into macrophages
that can further respond to the threat at hand [6]. It is these tissue-infiltrating macrophages that are best recog-
nised for protecting the host from pathogens and responding to organ damage. Because of their different
ontogeny, TRMs and monocyte-derived macrophages are genetically distinct and thereby largely considered to
be discrete cell types that cannot be recompensed by the other [7,8].

3D cell culture models
There is still a lot that we don’t understand about macrophage responses within tissues. There are competing
hypotheses that homeostatic TRM function is genetically instructed or steered by tissue microenvironments,
and that their function can or cannot be recompensed by infiltrating monocyte-derived macrophages [7–9].
Likewise, identifying new molecules that attenuate or enhance monocyte-derived macrophage responses within
tissues is an area of significant research due to the importance of macrophage function within various diseases.
3D cell culture is a rapidly emerging technology as more studies report these systems to be closer to in vivo
tissues and promote natural cellular responses. Such technologies may therefore be beneficial to enhance under-
standing of macrophage biology. However, despite the appeal of 3D cell culture in providing a more physio-
logical microenvironment, it comes with its own set of challenges including reproducibility, the control of
mechanical properties like elasticity, porosity, and the unequal distribution of oxygen, nutrients, and waste pro-
ducts [10,11]. Several 3D culture methods have been developed, each with their own advantages and disadvan-
tages (Table 1). These models differ in their physical and chemical characteristics and should be utilised
depending on the requirements of the cell or system to be studied [12]. Some of the more commonly used
models include the generation of cell aggregates or spheroids [13], and resuspension of cells within natural or
synthetic bioscaffolds [14], which are enhanced with 3D bioprinting [15]. We now briefly review these various
systems and their applicability for macrophage culture.

Cellular aggregates
The formation of cellular aggregates or ‘spheroids’ can be considered the simplest 3D culture model, simply
requiring the self-aggregation of cells. These can be produced via a number of methods. In hanging-drop cul-
tures, simple gravity causes cell–cell association and the formation of small aggregates. Microcarriers are com-
prised of beads coated with adhesive extracellular matrix (ECM) proteins like collagen that cells attach to
[16,17]. Ultra-low attachment plates prevent cell adhesion to the plate surface, often promoted by further treat-
ing plates with a hydrophilic coating [18]. As a result, cells adhere to each other resulting in the formation of
small cellular aggregates. Cells can also be treated with magnetic nanoparticles and subjected to a magnetic field
in order to promote aggregation [19]. 3D spheroids can also be generated via constant agitation, such as in a
rotating wall vessel [20], which not only promotes aggregation, but also maintains cell growth and differentiation
[21]. Whilst ideal for high throughput cell–cell interaction studies, these methods are difficult to standardise and
lack important cell–ECM interactions which are particularly critical for macrophage function (discussed later).

Bioscaffolds
Bioscaffolds are one of the most common forms of 3D cell cultures. These models involve the encapsulation of
cells within hydrogels comprised of synthetic (e.g. polyacrylamide or polyethylene glycol (PEG)) or natural

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).388

Biochemical Society Transactions (2023) 51 387–401
https://doi.org/10.1042/BST20221008

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/51/1/387/943198/bst-2022-1008c.pdf by guest on 17 April 2024

https://creativecommons.org/licenses/by/4.0/


Table 1 Comparison of 3D culture methods

Advantages Disadvantages Ref.

Hanging drop

- Good supply of oxygen to cell
aggregates

- Flexible size dependent on cell
concentration

- Amenable for multicellular culture
- Can be implanted into hydrogels

- Prolonged experiments require constant
transfer and nutrient replenishment

- Difficult to standardise
- No cell–ECM interactions

[113,114]

Ultra-low attachment plates & magnetic
levitation

- Higher throughput and capacity for
larger volumes

- Amenable for multicellular culture
- Can be implanted into hydrogels

- Unsuitable for adhesion-related studies
- Difficult to standardise
- No cell–ECM interactions

[18,115,116]

Bioreactor culturing

- Capacity for high volumes and
aggregates

- Highly controlled environment (temp,
pH, oxygen/CO2…etc)

- Can be combined with microcarrier
technology to form consistent
spheroids

- Cost ineffective; requires specialised
equipment

- Low throughput analysis
- Difficulty standardising, particularly
co-culture aggregates

[20,117,118]

Microcarriers

- Customizable bead sizes
- Advantages as per other spheroid
methodologies

- Disadvantages as per other spheroid
methodologies

[21,119]

Bioscaffolds: natural, synthetic or
composite

- Modelling of cell–ECM interactions
- Ability to control cell adhesion
- Easily adjustable biophysical
parameters including stiffness and
porosity

- Can be enhanced with 3D
bioprinting

- Difficulty producing cell aggregates/
spheroids

- Lower throughput
- Reproducibility issues due to
batch-dependent variability particularly
with natural ECMs

- Difficulty extracting cells for further analysis
- Imaging challenges

[27,28,120–123]

3D bioprinting

- Highly consistent and reproducible
compared with other 3D culture
methods

- High throughput
- Specific architecture and geometry
of bioscaffolds can be designed

- Other advantages as per
bioscaffolds method

- Microtissues can be hard to formulate
- Potential for poor cell seeding

[23,31,33,124]
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polymers (e.g. alginate, collagen, or other ECM proteins). Nanofibrillar protein assemblies from ECM proteins
such as collagen are frequently employed as natural bioscaffolds [22,23]. In these systems, cells are encapsulated
within collagen fibres forming cell:scaffold interactions in three dimensions, akin to their natural tissue envir-
onment [24]. Cells can be mixed with bioscaffold material and gelation triggered by changes in pH or tempera-
ture. Additional extracellular matrix proteins can be readily incorporated either before or after gelation. At low
concentrations, these structures are highly porous and readily allow the diffusion of media, supplements, gases,
and small molecules [25]. However, in stiffer gels with increased fibrillar concentrations this porosity can be
significantly reduced leading to limited nutrient exchange, removal of waste products and eventually cell death
[26]. Detailed analysis of 3D suspended cells is a significant challenge with bioscaffolds models, often requiring
further processing prior to analysis for example, degradation of hydrogels to produce single cell suspensions for
flow cytometry or mass spectrometry analysis. Furthermore, the use of biological materials for hydrogel culture
can be limited by batch variation and poor reproducibility.
Synthetic hydrocarbon-based polymers can also be used to form hydrogels for 3D cell culture and are often

easier to manipulate. Using materials such as PEG it is possible to design hydrogels with specific architectures
and flexibility by adjusting molecular density [27]. Additionally, through crosslinking of chemical groups struc-
tural features of the 3D network can be modified. For example, by varying the crosslinker structure in
PEG-diester-dithiol gels, Jain et al. [28] were able to control gelation and degradation rates of their 3D matrices.
Compared with biological hydrogels, synthetic scaffolds may offer improved reproducibility, however they often
are bad mimics of ECM chemistry and architecture requiring further modification in order to be suitable for
cell culture, including pH adjustment and ECM incorporation for cell adhesion. Whilst synthetic scaffolds have
low biological mimicry of in vivo environments, they do pose several advantages in that they can be relatively
easily tuned to a desired stiffnesses, have controllable degradation rates, and can be functionalised with drugs
or proteins. These features make synthetic scaffolds ideal materials to be used in regenerative medicine where
the aim is to implant sacrificial scaffolds into recovering tissue that boost regeneration [29,30]. The develop-
ment of synthetic bioscaffolds may be particularly beneficial in the context of macrophages, which can acquire
phenotypes that naturally promote tissue repair and are therefore attractive targets.

Bioprinting
Bioprinting 3D scaffolds is a rapidly emerging system which has applications for tissue engineering and regen-
erative medicine [31]. Bioprinting utilises 3D printing technology, however rather than synthetic plastics, prints
‘bioinks’ for cell culture. Bioinks range from natural materials such as collagen to commercially available mix-
tures suitable for 3D cell culture. The inks are usually mixed with cells prior to printing and need to be print-
able in their un-crosslinked state, meaning that they have sufficiently low viscosity to be extruded through a
printer head. Immediately after printing the inks are chemically or photo-crosslinked to produce stiffer 3D
hydrogels that retain their printed dimensions. Not only is this technique used to print biocompatible 3D cell
scaffolds, but also complex tissues and organs [32]. There are several advantages to this technique, including
the ability to print highly detailed structures with extreme precision that make it ideal for regenerative treat-
ments [33]. Elsewhere, 3D bioprinting has been utilised to optimise tissue-mimetic models to investigate
tumorigenesis and infectious diseases [23,34].

Organs-on-a-Chip
Organs-on-a-Chip are state-of-the-art 3D systems which aim to model whole organs in vitro [35]. These
models employ microfluidics devices to recapitulate parts of human organs including immunogenic sites such
as lymph nodes and bone marrow. There are many varieties of these systems, but generally, cells are suspended
within 3D hydrogels within microchannels that are then perfused with media. Chips can be made more
advanced by the addition of endothelial cell-lined vascular channels [36] or co-culturing different cell types in
multiple microchambers [37]. Immune-System-on-a-Chips are simply variations which incorporate immune
cells. They have been used to study the migration of immune cells during inflammatory disease which was pro-
posed to better replicate in vivo complexity compared with traditional transwell assays [38]. To date, there has
been limited investigation of the effect of macrophages in these ‘chip’ models. Given their high abundance in
tissues, the inclusion of macrophages would provide invaluable understanding of their role in disease and the
maintenance of tissue homeostasis.
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Macrophage environmental stimuli
There are numerous biochemical and biophysical parameters which influence macrophage phenotype and func-
tion particularly immunogenic pathogens and cytokines. However, there is emerging evidence of additional
tissue-specific properties that modulate macrophage phenotype, including the extracellular matrix (ECM) com-
position of tissues and their ligation of corresponding macrophage integrin receptors and other proteins, mech-
anical properties of tissues such as stiffness, the presence of other cells, and the concentration of small
molecules (Figure 1). All these parameters may therefore be important to consider or incorporate when design-
ing effective 3D models to model macrophage biology in vitro. Here we provide a general overview of how

Figure 1. Environmental influences on macrophage biology.

Tissue resident macrophages (TRM) respond to a variety of extracellular cues, all of which have been shown to influence their

activation and function. Environmental factors that affect macrophage biology include: the extracellular matrix (ECM)

composition, such as the concentration of collagen, elastin, laminin and fibronectin as well as glycosaminoglycans (GAGs);

tissue stiffness and geometry; cytokine and chemokine signalling; damage-associated molecular patterns (DAMPs) and

pathogen-associated molecular patterns (PAMPs); metabolite and dissolved gasses; and interactions with other cell types.

Macrophage differentiation and survival are regulated by cytokines such as colony stimulating factor-1 (CSF-1), and are

activated towards pro-inflammatory ‘M1’ phenotypes in response to interferon γ (IFNγ) and tumour necrosis factor alpha

(TNFα). Contrastingly, anti-inflammatory ‘M2’ macrophages result from interleukin (IL)-4, IL-13 and IL-10 signalling. Altogether,

these factors form a niche which determine TRM identity and ensure proper function, or promote activation to fight infection

and restore homeostasis.
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some of these factors influence macrophage function. The contribution of metabolites and other small mole-
cules is not discussed here and we instead direct interested readers to reviews by [39,40].

Infection and cytokine signalling
Macrophages are well known for their ability to sense and phagocytose invading pathogens. Pathogen sensing
occurs via the detection of pathogen associated molecular patterns (PAMPs) via surface expressed pattern rec-
ognition receptors (PRRs); one example being lipopolysaccharides (LPS) found on the outer membrane of
gram-negative bacteria which is recognised via toll-like receptor (TLR) 4 [41]. Detecting such a signal then
results in the macrophage acquiring a so-called ‘M1’ pro-inflammatory phenotype that aims to either directly
kill any ingested pathogens via the production of enzyme nitric oxide synthase (iNOS) and antimicrobial nitric
oxide (•NO) or attracting other immune cells by the production of pro-inflammatory cytokines such as inter-
leukin (IL)-1β and tumour necrosis factor alpha (TNF)-α [42]. Similar mechanisms exist from macrophage
sensing of endogenous danger signals damage associated molecular patterns (DAMPs), which are produced
from dead or dying cells, subsequently stimulating PRRs and resulting in macrophage pro-inflammatory activa-
tion. There is an enormous body of literature describing the activation of macrophages via PAMPs, DAMPs
and PRRs (for example [43]) and is not the focus of this review.
Cytokines are additional environmental signals that can potentiate macrophage activation in the presence of

PAMPs/DAMPs, or that can directly induce macrophage phenotypes. During gram-negative bacterial infection
where TLR signalling is activated, the production of interferon gamma (IFN-γ) by Th1 cells primes and
potentiates macrophage activation and increases microbicidal functions. In contrast, upon infection with para-
sites such as helminths, a strong T helper 2 response is induced resulting in the production of interleukin
(IL)-4, IL-13 and IL-10 [44]. Macrophages react to these cytokines through cytokine receptors which induce
activation into so-called ‘M2’ or anti-inflammatory phenotypes that promote parasite clearance and tissue
repair [45]. For the latter, anti-inflammatory activated macrophages promote extracellular matrix (ECM)
remodelling and repair by synthesising polyamines and substrates such as proline for the synthesis of ECM pro-
teins [46]. Macrophage acquisition of anti-inflammatory phenotypes can also occur in the absence of helminths
via the production of IL-4 and IL-13 by other mechanisms. For example, Qiu et al. [47] showed that when
mice were exposed to environmental cold, IL-4-producing eosinophils migrate into white adipose tissue where
they induce the infiltration and activation of anti-inflammatory M2 macrophages. Thus, incorporation of cyto-
kines such as IL-4 or IL-13 into bioscaffolds may be an important consideration if anti-inflammatory or tissue
repair macrophage phenotypes are desired. Bonito et al. [48] showed that the functionalisation of synthetic 3D
scaffolds with IL-4 resulted in a dose-dependent increase in human monocyte-derived macrophage TGF-β
secretion, indicating the activation of anti-inflammatory phenotypes. Such developments hold great promise for
regenerative medicine whereby the implantation of such pro-wound healing macrophage-laden scaffolds would
have a greater likelihood of favourable host interactions.
TRM homeostatic functions and self-renewal are thought to be continually maintained by tissue-specific

exogenous factors such as cytokines [49]. For example, microglia are shown to require neuron-produced IL-34
for their proper development and maintenance [50], while other myeloid cells such as monocyte-derived
macrophages are not sensitive to this cytokine [51]. This would suggest that IL-34 is a cytokine that should be
incorporated into 3D cultures for the propagation of microglia. In the bone, receptor activator of NF-κB
(RANK) and RANK ligand (RANKL) signalling induces downstream activation of nuclear factor of activated T
cells 1 (NFATc1), which collaborates with other transcription factors such as microphthalmia-associated tran-
scription factor (MITF) to regulate osteoclast-specific genes and maintain osteoclast identity [52]. Osteoclast
culture in 2D is well established and as a minimum requires RANKL together with CSF1 [53]; it would there-
fore follow that these molecules should be considered for the 3D culture of osteoclasts. While microglia and
osteoclasts have reasonably well-defined in vitro cytokine requirements, it is less clear for other TRMs. In a
recent study, the renewal of local liver TRM (Kupffer cell) populations post partial-hepatectomy required IL-6
[54]. Kupffer cells are also shown to need bone morphogenetic protein (BMP) 9 and BMP10 cytokine signal-
ling for identity and self-renewal via activin receptor-like kinase 1 (ALK1) [55]. In contrast, lung TRMs (alveo-
lar macrophages) were shown to require CSF2 (also known as granulocyte-macrophage colony stimulating
factor) in vivo to both acquire their identity in the developing tissue and to maintain their viability throughout
adulthood [56]. In support of this notion, the supplementation of CSF2 into in vitro 2D cultures resulted in
the long-term expansion of cells that largely maintain alveolar macrophage identity [57]. Overall, these studies
highlight the importance and tissue-specificity of cytokines required for the maintenance and propagation of
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TRMs in vivo. However, for certain TRMs evidence is limited as to which cytokines are required in vitro and
so careful optimisation may be is necessary before their inclusion within 3D cultures.

Interactions with other cells
During wound healing, macrophages have a well-established role in communicating with neighbouring fibro-
blasts to promote tissue remodelling [58–61]. Reciprocating the relationship, fibroblasts also secrete factors
including CSF1 to sustain tissue macrophage populations [62]. However, an elegant study by Zhou et al. [63]
showed that fibroblast production of CSF1 is not simply a secreted factor recognised by macrophages, but
instead promotes the physical cell:cell interaction of macrophages with fibroblasts. They subsequently proposed
that this close spatial proximity is critical for tissues to regulate overall population numbers of both macro-
phages and fibroblasts [63], meaning that macrophages are sensitive to the presence of fibroblasts within
tissues, and vice versa. In a recent follow-up study, this same group elucidated that fibroblast production of
CSF1 is dependent on their sensing of the 3D tissue environment and available space [64]. Such findings could
be further interrogated and modelled within 3D culture systems, for example, by tuning scaffold porosity and
examining its effect on fibroblast production of CSF1 and subsequent macrophage proliferation.

Tissue extracellular matrix proteins and their sensing by macrophages
In addition to immunogenic cues, interactions with the tissue extracellular matrix (ECM) have been shown to
influence macrophage activation and function. The ECM is composed of a range of different proteins including
fibrous protein assemblies (e.g. collagens, elastins, fibronectins, laminins) that provide structural architecture
for cellular adhesion, influence cellular morphology, migration and signal to cells; and proteoglycans and glyco-
saminoglycans, which form a gelatinous environment that buffers and hydrates the tissue [65]. In addition, the
composition of the ECM may directly modulate macrophage phenotypes [66]. Here, bone marrow-derived
macrophages (BMDM) cultured with decellularized small intestine ECM adopted genetic signatures like anti-
inflammatory ‘M2’ macrophages, while culture with decellularized urinary bladder ECM promoted transcrip-
tomes closer to pro-inflammatory ‘M1’ stimulated macrophages [66]. In another study, macrophages exposed
to ECM proteins from the small intestine, urinary bladder, brain and colon were found to adopt anti-
inflammatory M2 phenotypes, whereas dermal ECM promoted M1 [67]. In these two studies, distinct macro-
phage phenotypes are induced upon exposure to different decellularized tissues, however, due to the crude
nature of these supplements it remains unclear whether these results are due to the ECM composition of
tissues or other factors. In a more direct study, macrophage culture on fibronectin aggregates with IFNγ stimu-
lation displayed enhanced phagocytosis and nitric oxide secretion compared with those stimulated with IFNγ
alone [68]. In another example, the molecular weight (MW) of the extracellular matrix glycosaminoglycan hya-
luronic acid influenced macrophage polarisation where low MW hyaluronic acid promoted M1 activation,
while high MW hyaluronic acid induced anti-inflammatory M2 activation [69]. Taken together, these studies
demonstrate that ECM materials can influence macrophage functions in synergy with immunogenic stimuli or
alone and thereby the selection of ECM protein can significantly sway the desired outcome. In addition, a
shortcoming with these various studies is that they differ greatly in the concentration of ECM proteins used
making their replication difficult. Therefore, the incorporation of ECM materials into 3D scaffolds must be
carefully considered depending on the tissue of interest, and active concentrations optimised to avoid unwanted
macrophage activation phenotypes.
Considering reports that ECM composition influences macrophage function, perhaps unsurprisingly it has

also been shown that integrins are also important in steering macrophage activation (Figure 2). Integrins are
surface receptors expressed by macrophages and many other cells which bind ECM proteins [70]. Integrins are
composed of two subunits, where one of 18 different alpha (α) subunits is combined with eight different beta
(β) subunits, forming a multitude of functionally distinct heterodimers that form specific receptors for ECM
proteins. For example, α1β1 integrin interacts with specific peptide sequences on collagen I, while αvβ3 binds
different sequences on vitronectin. Therefore, how macrophages respond to specific ECM proteins within tissue
environments is highly dependent on integrin expression.
There have been numerous reports identifying various integrins to mediate macrophage activation, however

there is generally a lack of consensus in the field as to which integrins are important, and the molecular mech-
anism by which they support macrophage phenotypes. For example, macrophages stimulated with LPS and
IFNγ up-regulate integrin αMβ2 (also known as CD11b/CD18), which binds fibrinogen and intercellular adhe-
sion molecule (ICAM)-1; resulting in enhanced macrophage anti-tumour activity via NF-κB signalling [71]. In
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addition, many integrins bind multiple ECM ligands making understanding their precise role in macrophage
activation more difficult. This includes αDβ2 (also known as CD11d/CD18; ICAM-3, VCAM-1 receptor) and
αVβ3 (vitronectin, fibronectin receptor), both of which have been shown to positively regulate macrophage
inflammatory responses including M1 cytokine expression [72,73]. αDβ2 is substantially up-regulated on macro-
phages during inflammation and retained at sites of inflammation, promoting chronic diseases such as athero-
sclerosis [73]. Moreover, multiple integrins can bind to a single ECM protein. For example, while αVβ3 and
αVβ5 both bind the ECM protein vitronectin, αVβ3 is associated with pro-inflammatory macrophage activation,
and αVβ5 is up-regulated in anti-inflammatory M2 macrophage activation [74]. This could be due to different
peptide sequences on the same ECM protein detected by specific integrins [75]. In addition to being ECM
receptors, integrins also have the capacity to detect other ligands, including transforming growth factor beta
(TGF-β). Kelly et al. [76] showed that TGF-β binding to αvβ8 reduced TNF-α production in response to LPS,
suggesting this ligation supresses pro-inflammatory M1 activation. Overall, these contrasting studies highlight
the confusion in the field as to which integrins are important for macrophage phenotypes. Elucidation of
which macrophage integrins must be ligated for specific functions is a critical consideration in the design of 3D
models, as unligated integrins can cause cellular apoptosis and death.
As well as integrins, macrophages also express tetraspanins on their cell surface, a family of proteins which

interact with and functionally regulate integrins and a range of other signalling molecules [77,78]. Studies have
shown that tetraspanins can also regulate macrophage activation. For example, tetraspanin CD9 was shown to
supress pro-inflammatory macrophage activation by reducing TNFα and matrix metalloproteinase production

Figure 2. Macrophage activation markers regulated by integrin expression and ligation.

Macrophages interact with extracellular matrix proteins through surface integrins, transmembrane proteins consisting of an alpha (α) and beta (β)

subunit. Upon activation by extracellular signals such as interferon gamma (IFNγ) and lipopolysaccharide (LPS), macrophages adopt ‘M1’

phenotypes, characterised by up-regulated pro-inflammatory cytokine production such as interleukin (IL)-6 and tumour necrosis factor alpha (TNFα).

M1 macrophages also secrete chemokines including fractalkine and macrophage inflammatory protein (MIP)-1 to further recruit immune cells.

Integrins αDβ2, αMβ2 and αVβ3 up-regulate expression of these classical M1 markers via the nuclear factor kappa-light-chain-enhancer of activated B

cells (NF-κB) pathway, which can result in supressed tumour growth. Alternatively, macrophages activated by IL-4 adopt an ‘M2’ phenotype,

characterised by up-regulated anti-inflammatory cytokine production, including transforming growth factor (TGF)-β and IL-10, and M2 markers

arginase 1 (Arg1), Ym1 and Fizz1. TGF-β receptor αVβ8 promotes M2 phenotypes by supressing pro-inflammatory activation by LPS, whilst

vitronectin receptor αVβ5 enhances M2 activation through peroxisome proliferator-activated receptor gamma (PPARγ).
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during HIV infection [79]. Additionally, tetraspanin CD81−/− macrophage-like cell lines exhibited significantly
higher proliferation rates [80]. Interestingly, knockouts of both CD9 and CD81 simultaneously resulted in the
formation of multinucleated giant cells in the lung, showing that these two tetraspanins work together to
prevent phagocyte fusion [81]. Our own research has shown that CD82−/− macrophages have decreased anti-
inflammatory M2 phenotypes [82]. In this case, we observed a decreased expression of macrophage integrin
α5, suggesting that CD82 regulates the expression of this integrin in M2 activated macrophages. This further
highlights the importance of sensing and binding to ECM proteins for the activation of macrophage pheno-
types. Elucidation of the plasma membrane proteome of monocyte-derived macrophages and TRMs from dif-
ferent tissues, and during various challenges, is necessary to uncover the molecular mechanism by which ECM
interactions support macrophage function.

Mechanical properties
Apart from the composition of the tissue microenvironment, mechanical properties such as stiffness (measured
in Pascal, Pa) also affect macrophage biology. In humans, residing TRMs or infiltrating monocyte-derived
macrophages will experience a variety of stiffnesses depending on the organ: liver ∼1 kPa, lung ∼5 kPa, muscle
∼20 kPa, while uncalcified bone is >100 kPa [83]. The mechanical properties of these tissues are influenced by
ECM composition and their microstructure [84]. The stiffness of culture conditions has recently been shown to
influence macrophage phenotype. In a study by Gruber et al. BMDMs cultured in 2D on soft substrates (1 kPa)
displayed rounder and smaller morphologies compared with those grown on stiffer substrates (150 kPa).
Furthermore, BMDMs stimulated with toll-like receptors TLR4 and TLR9 agonists on softer cultures secreted
higher levels of the pro-inflammatory cytokine TNFα, indicating that the elasticity of the culture substrate
modulated macrophage sensing of PAMPs [85]. In contrast, plastic 2D dishes routinely used to culture cells in
vitro are >1000 kPa. More recently, Meli et al. [86] showed that the pro-inflammatory activation of human
monocyte-derived macrophages was reduced upon culture on soft fibrin substrates. In addition, they identified
that the activity of the mechanosensing transcription factor Yes-associated protein (YAP) correlated with
increasing substrate stiffness and, subsequently, pro-inflammatory TNF-α production [86]. Mechanosensing
and mechanotransduction explains why cells (including macrophages) have altered phenotypes when cultured
in substrates of different stiffnesses. Generally, it is considered that the connection cell cytoskeletons to the
ECM via integrins results in the formation of focal adhesions [87]. This subsequently regulates ‘outside-in’ and
‘inside-out’ integrin signalling, which ultimately activate transcription factors such as YAP that mediate the
cells response to the environment (reviewed in [88,89]). Altogether, further identification of molecules and
mechanisms that are responsible for sensing the physical environment of tissues will be essential in our under-
standing of how this factor supports macrophage activation.

Tissue geometry
During diseases such as cancer and tissue fibrosis, the shape or architecture of tissues can change due to
increases in collagen production and ECM crosslinking [90,91]. Considering that macrophage phenotype plays
a role in both these conditions, the effect of tissue geometry on macrophage activation has been explored by
several studies. a role in driving both these environments are known to promote anti-inflammatory, pro-fibrotic
macrophage phenotypes, perhaps it is unsurprising that changes to tissue geometry influence macrophage
biology [92,93]. In a study by Wang et al. [93] after transplanting shrink-film wrinkles into the subcutaneous
layer of mice, collagen deposition decreased at those sites while arginase-1 expression was increased, suggesting
optimal macrophage conditions to avoid foreign body responses in future transplants. Elsewhere, forcing elon-
gated morphologies via ECM ‘stamps’ caused macrophages to acquire M2 phenotypes without the aid of cyto-
kine supplementation [92]. These two studies highlight the importance of geometry in steering macrophage
phenotypes, even in the absence of immunogenic cues. 3D bioprinting is one method which could be used to
further interrogate the role of geometry in macrophage activation.

Application of 3D models to understand macrophage
biology
Tumour biology
3D cell culture has matured largely in the cancer research field as the tumour microenvironment is well recog-
nised to be crucial for tumour development and immunity [94,95]. For example, aggregates of tumour cells
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(also known as spheroids) are more frequently being employed in high-throughput drug screens to identify
new chemotherapeutics [98]. Macrophages are important immune components of the tumour microenviron-
ment where their phenotype is a determinant for tumour growth or removal [99]. To recreate this interplay in
vitro, Linde et al. [100] cultured human squamous cell carcinoma (SCC) cells together with macrophages and
fibroblasts in 3D collagen I hydrogels. Unactivated macrophages suspended within these 3D SCC co-culture
scaffolds were founds to spontaneously adopt a M2 phenotype, recapitulating how cancer cells program favour-
able pro-tumour macrophage phenotypes in vivo [100]. In another study, M2 macrophage cytokine SPP1 accel-
erated the growth of prostatic intraepithelial neoplasia (PIN) when co-cultured on 3D Matrigel scaffolds [96].
Elsewhere, a similar prostate cancer model revealed macrophage cytokines C5a, CXCL1 and CCL2 responsible
for PIN cell proliferation through ligand–receptor interactions [97]. Together, these preliminary studies provide
evidence for the development of 3D models that effectively mimic complex tumour–macrophage interactions
observed in vivo. Such models would be important in future studies for the screening of new chemotherapies
and immunotherapies.

Infection and granuloma formation
Macrophages are often the host cell of invading pathogens since they are the first to engulf the foreign entity.
Another application of 3D macrophage models could be the development host-directed therapies for infectious
diseases – thereby bypassing mechanisms of pathogen resistance and boosting macrophage microbicidal
responses [101]. This may be particularly important in infections with intracellular pathogens such as
Mycobacterium tuberculosis (Mtb) and Leishmania spp. which induce granuloma formation. These large aggre-
gates of immune cells (including macrophages) aim to limit the spread of persistent infections, but in doing so,
can result in long-lasting latent infections that are increasingly harder to treat [102]. To generate a 3D human
tuberculosis granuloma model, Tezera et al. [103] used microsphere technology where spheroids containing
Mycobacterium tuberculosis (Mtb) and primary human blood mononuclear cells (PBMCs) where formed
within a collagen-alginate matrix. These spheroids exhibited in vivo granuloma-like characteristics, including
prolonged culture of human cells and increased cytokine production. Elsewhere, Mtb-infected human PBMCs
seeded in collagen matrices formed microgranulomas comprising of macrophages and T cells that exhibited
increased inflammatory cytokine production and accumulation of lipid bodies, typical of latent Mtb infection
[104]. More recently, spheroids generated with THP-1 monocyte/macrophage cells have been used to study
Mtb coinfection with other diseases such as HIV, highlighting the capacity of 3D cell culture to understanding
complex biological processes [105]. Given that it is becoming increasingly recognised that no animal model can
fully reproduce human Mtb infection in vivo, new 3D models of Mtb provide promising alternatives in which
human infection can be accurately recapitulated in a controlled in vitro environment [106,107]. In all, the
application of 3D systems such as these permit new dissection of host–pathogen interactions during infectious
diseases. One such example is COVID-19, where severity of infection is correlated to the function of lung
TRMs known as alveolar macrophages. Alveolar macrophage responses during SARS-CoV-2 infection is pro-
posed to result in the overproduction of inflammatory cytokines or so-called ‘cytokine storm’ and increase the
severity COVID-19 [108]. Furthermore, it has been shown that alveolar macrophages are less effective at com-
bating SARS-CoV-2 infection post-inflammation, leading to long-term susceptibility to disease [109]. Lung
tissue contains a high amount of elastin, collagen and glycosaminoglycans to give its characteristic elasticity
[110,111]. Multiple methods have been developed to decellularize lung tissue to analyse the effect of ECM com-
position, however there is a lack of studies exploring the influence of this environment on lung TRM biology
[111,112]. Considering the significant role alveolar macrophages play in clearing respiratory diseases and the
uniqueness of the lung extracellular environment, 3D models may be used to further improve our knowledge of
diseases like COVID-19, thereby improving therapeutic discovery.

Perspectives
• Macrophages are cells which reside or infiltrate all mammalian tissues and are critical for

maintaining the homeostasis of their microenvironment, thereby making them prime candi-
dates for 3D culture.

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).396

Biochemical Society Transactions (2023) 51 387–401
https://doi.org/10.1042/BST20221008

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/51/1/387/943198/bst-2022-1008c.pdf by guest on 17 April 2024

https://creativecommons.org/licenses/by/4.0/


• The development of 3D models for macrophage culture would aid our understanding of their
function in the context of many diseases (e.g. cancer, infection) and during homeostasis.

• With the latter, there is still a great deal we don’t know about the tissue-specific requirements
for TRM function and renewal, and whether they can be recompensed by monocyte-derived
counterparts. Careful recapitulation of specific environmental cues such as ECM protein com-
position and elasticity in 3D models would enhance our understanding of the biology of these
important cells.
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