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The vertebrate brain and spinal cord arise from a common precursor, the neural tube,
which forms very early during embryonic development. To shape the forming neural tube,
changes in cellular architecture must be tightly co-ordinated in space and time. Live
imaging of different animal models has provided valuable insights into the cellular dynam-
ics driving neural tube formation. The most well-characterised morphogenetic processes
underlying this transformation are convergent extension and apical constriction, which
elongate and bend the neural plate. Recent work has focused on understanding how
these two processes are spatiotemporally integrated from the tissue- to the subcellular
scale. Various mechanisms of neural tube closure have also been visualised, yielding a
growing understanding of how cellular movements, junctional remodelling and interac-
tions with the extracellular matrix promote fusion and zippering of the neural tube.
Additionally, live imaging has also now revealed a mechanical role for apoptosis in neural
plate bending, and how cell intercalation forms the lumen of the secondary neural tube.
Here, we highlight the latest research on the cellular dynamics underlying neural tube for-
mation and provide some perspectives for the future.

Introduction
The formation of the neural tube is a critical process in the embryonic development of vertebrates. It
is rapid and complex, involving genetic, morphogenetic, epigenetic, mechanical, and environmental
cues. During neurulation, multiple cellular processes are tightly co-ordinated in time and space to
convert the flat neural plate into the neural tube, which will give rise to the central and peripheral
nervous systems [1,2]. The process of vertebrate neurulation is variable among species, mainly in
regard to the number and timing of closure points as well as the contributions of primary and second-
ary neurulation [3]. Primary neurulation shapes the anterior part of the neural tube and is highly con-
served amongst a variety of vertebrate organisms including zebrafish (Danio rerio), frogs (Xenopus
laevis), avian species such as chick (Gallus domesticus) and quail (Coturnix japonica) and mammalian
species including mouse and human [4–10]. Although the details vary between species, the general
process of primary neurulation involves remodelling of the neural plate by convergent extension,
bending of the tissue to create the neural folds and fusion of the apposed neural folds to form a tube
[3,4]. The posterior end of the neural tube is generated through a process of secondary neurulation.
Formation of the secondary neural tube results from aggregation and mesenchyme-to-epithelial transi-
tion of a loosely packed group of cells in the posterior neural plate. This forms a condensed rod of
tightly adherent, polarised epithelial cells which cavitates to form a neuroepithelium surrounding a
lumen [11]. Despite the substantial morphological variation in neurulation morphology between verte-
brate species, significant similarity and conservation is maintained in the underlying molecular and
cellular mechanisms [3].
Incorrect neural tube formation causes severe congenital malformations called neural tube defects

(NTDs) which are amongst the most common birth defects. Approximately 300 000 babies are born
every year with NTDs leading to ∼88 000 deaths and 8.6 million years of life lost due to disability and
premature death annually [12].
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Cellular dynamics of development
Neural tube morphogenesis requires the precise spatiotemporal coordination of changes in cellular shape and
position. These dynamic cellular changes are primarily generated by the processes of convergent extension,
apical constriction and cell intercalation. Failures in any of these processes disrupts the morphology of the
neural tube and may result in NTDs. To understand how these dynamic processes interact across scales to
form the neural tube, it is necessary to image and manipulate them in real time in the living embryo. Here, we
will discuss recent work using high resolution live imaging approaches in different model organisms to under-
stand the cellular dynamics of neural tube formation.

Convergent extension
Convergent extension (CE) is a morphogenetic process in which tissue narrows or converges along one axis
and elongates or extends in one or both of the orthogonal axes (Figure 1). CE is a fundamental mechanism
that shapes many different tissues in both vertebrates and invertebrates and is critical for neural tube formation
[13]. One of the most ubiquitous mechanisms underlying CE is polarised cell intercalation directed by the non-
canonical Wnt/Planar Cell Polarity (PCP) pathway. PCP signalling polarises cells within the plane of the tissue
and perpendicular to the apicobasal axis [14]. It relies on the asymmetric segregation of modules of core PCP
proteins to opposite axial domains of the cell cortex in a pattern that propagates throughout the tissue. A
major target of PCP signalling is regulation of the actin cytoskeleton. Unlike the canonical Wnt/
β-catenin-induced gene regulation pathway, the noncanonical Wnt/PCP pathway exerts functions on cellular
polarisation and downstream directional actomyosin remodelling [15]. Although the Wnt/PCP pathway was
originally identified in wing and eye development in Drosophila embryos [16,17], the orthologous genes and
proteins are conserved across a variety of vertebrates such as Xenopus, zebrafish, avian animals, mouse, and
human [18–22], confirming its fundamental role in development.
A high proportion of the genetic mutations that have been linked to NTDs are found in members of the

PCP signalling pathway [24], and recent advances in live imaging approaches are providing insight into the
critical dynamic functions of PCP proteins in neural tube morphogenesis. Live imaging of the Xenopus neural
plate epithelium revealed that differential turnover of the PCP proteins Prickle2 (Pk2) and Vangl2 leads to
their active enrichment specifically at shrinking cell junctions [25]. Futhermore, this junctional accumulation of
Pk2 is pulsatile and spatiotemporally correlated with pulsatile enrichment of actomyosin. Disrupting PCP sig-
nalling not only perturbs asymmetric Pk2 protein localisation, but also inhibits the planar polarisation of acto-
myosin contraction and CE in the closing neural tube. Computer simulations suggest that asynchronous
actomyosin contractions that alternate at an optimal frequency between neighbouring cells underly efficient CE
[26]. Interestingly, Pk2 junctional localisation is also pulsatile in the Xenopus mesoderm, and correlates with
oscillations of actomyosin that are required for CE. Pk2 tunes the frequency of these actomyosin oscillations
suggesting that temporal asymmetry of PCP proteins at cell junctions may be as important as their planar
asymmetry [26].
As the core PCP protein, Frizzled, functions as a Wnt receptor [27], Wnt signalling has long been proposed

to control planar cell polarity, yet multiple overlapping inputs now appear to influence PCP establishment and
orientation [28]. Within the Xenopus neuroectoderm, ectopic Wnt expression can reorient the polarity of the
core PCP protein Vangl2, suggesting that a gradient of Wnt signals from the posterior of the embryo may
establish planar cell polarity along the anterior–posterior axis of the neural tube [29]. However, mechanical
cues such as actomyosin contraction and actin remodelling have also been shown to instruct planar cell polarity
[30,31]. Recent work applying uniaxial stretch to Xenopus explants reveals a cooperative relationship between
Wnt signalling and mechanical inputs in the neuroectoderm [32]. Both Wnt signalling and unidirectional
tension can control the orientation of PCP, however the degree of polarisation is greatest when the direction of
the mechanical input is aligned with a diffusion gradient of Wnt signalling. This suggests a model where tissue
stretch along the anterior–posterior axis arising from morphogenic movements coincides with a posterior Wnt
diffusion gradient to reinforce the robustness of PCP in the developing neural tube. These findings are begin-
ning to reveal how neural tube morphogenesis is directed by a complex interplay between cellular properties
and mechanical and biochemical cues across scales.
Two distinct modes of CE, namely cell crawling and cell junction contraction, have previously been identified

as contributing to CE cell movements (reviewed by [33]). In the mouse neural plate, these two processes can
occur concurrently within cells during CE [34]. Recent work combining live imaging of Xenopus embryo

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).344

Biochemical Society Transactions (2023) 51 343–352
https://doi.org/10.1042/BST20220871

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/51/1/343/943218/bst-2022-0871c.pdf by guest on 24 April 2024

https://creativecommons.org/licenses/by/4.0/


mesoderm with computational modelling showed that although cell crawling and junction contraction can
occur both independently and collaboratively throughout development, CE is more efficient when these pro-
cesses are integrated within the same cell [35]. Actin assembly associated with cell crawling and junction con-
traction is augmented when these processes occur concurrently, significantly increasing the efficiency of CE.
This synergistic effect resembles the feedforward loop that promotes actomyosin cable formation in Drosophila
[36], suggesting that mechanoreciprocity between the two pools of actomyosin may integrate cell crawling and
junction contraction. Whether and how these two modes of CE also contribute to neural tube formation in

Figure 1. Convergent extension and apical constriction in neural tube morphogenesis.

(A) Schematic showing how convergent extension drives the narrowing and lengthening of the neural plate. (B) Stills from

time-lapse recordings of Xenopus neurula stage embryos expressing membrane-GFP. Dotted lines delineate the boundaries of

the neural plate and show narrowing of the neural plate and neural fold movement towards the midline. (C) Schematic showing

how apical actomyosin contraction reduces the apical cell surface area to achieve apical constriction and bend an epithelial

tissue. (D) Stills from a time-lapse recording from the posterior region of a neurula-stage Xenopus embryo. Arrowheads indicate

the contraction of apical actomyosin and reduced apical cell surface area during AC. B and D adapted with permission from [23].
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other organisms remains to be determined. To date, most live imaging of CE during neural tube formation has
been performed using Xenopus but a recent study in mice suggested the process appears to be mostly conserved
in the mammalian model [34]. However, recent advances in transgenic avian models offer an exciting system
for real-time investigation of cellular, morphogenetic, genetic and signalling dynamics underlying neural tube
morphogenesis in a higher vertebrate [37,38].

Apical constriction
Apical constriction (AC) is a common mechanism of tissue remodelling that involves reduction in the apical
surface area of a cell [39]. The resulting changes in cell geometry can shape tissues by bending epithelial sheets
or causing cell ingression or extrusion (Figure 1). To this end, AC plays a part in neurulation by contributing
to the formation of the ‘bending points’ which facilitate the bending of the neural plate and also assists in force
generation which promotes closure of the neural tube [3]. However, these bending points or hinge points may
not be exclusively generated through AC. Recent computational modelling suggests that the formation of the
dorso-lateral hingepoints in the spinal neural tube could be a passive response to the zippering process during
neural tube closure [40].
The pseudostratified epithelial cells of the neural tube undergo interkinetic nuclear migration as a function

of the cell cycle. Subsequently, cells in the S phase tend to have smaller apical surfaces due to basally located
nuclei. Both AC and interkinetic nuclear migration have been described as important for neural tube closure
[41,42]. Recently, live imaging of the mouse neural plate demonstrated that there is coordination between these
two processes, specifically in the posterior neural pore (PNP) [43]. While the natural progression of inter-
nuclear migration has widening effects on the PNP, Rho kinase (ROCK) acts to compensate by maintaining
tension in the neuroepithelium and facilitating AC for the progression of neural tube closure. Inhibiting ROCK,
with specific inhibitor Y27632, causes an increase in apical area and a reduction in PNP tension, suggesting an
indispensable role for ROCK-mediated AC in mouse PNP closure.
AC is driven by actomyosin contraction and studies in frog and chick embryos have described pulsed medial

actomyosin-based contractions occurring during neural tube closure (reviewed in [39]). In Xenopus, distinct
patterns of AC behaviour have been observed in the anterior and posterior regions of the neural plate during
neural tube closure [44]. In the anterior neural ectoderm, a greater proportion of cells display AC and cells
undergo a gradual reduction in apical surface area. However, neural ectoderm cells in the posterior neural plate
display later and more rapid apical area reductions. Intriguingly, both N-cadherin and actin accumulate at cell
junctions and the medial cell surface in the anterior neural ectoderm, but N-cadherin did not accumulate in
the posterior neural ectoderm cells. This differential behaviour could reflect a region-specific function of
Shroom3 in coupling actin dynamics to N-cadherin in the anterior neural ectoderm, since the loss of Shroom3
results in a reduced accumulation of medial and junctional actin and decreased capacity for AC specifically in
this region. In the posterior neural ectoderm, Shroom3 seems to control polarisation of junction contractions
underlying CE without affecting AC, suggesting an interaction with the PCP pathway. These different functions
of Shroom3 may also correspond to a previous observation that inactivation of Shroom3 leads to highly pene-
trant cranial NTDs but weakly penetrant spinal NTDs [45]. Together, these findings demonstrate that distinct
mechanisms couple cell shape changes to actomyosin and cell adhesion along the anterior–posterior axis of the
embryo.

Integration of convergent extension and apical constriction
The processes of CE and AC are the two most prominent morphogenetic movements active in the neural plate
and both processes are indispensable to neural tube closure [42,46,47]. However, they do not operate in isola-
tion and recent work applying live imaging approaches is beginning to reveal how differing spatiotemporal
dynamics of AC and CE are integrated to form the neural tube (Figure 2) [23]. In Xenopus, the distinct cell
behaviours, visualised through microinjections of histone-GFP mRNA, in the anterior and posterior regions of
the neural plate may be due to differential PCP activity. Although PCP-mediated cell intercalation and CE
movements are restricted to the posterior neural plate during the first phase of neural tube closure, the force
this generates is required for elongation of the anterior neural plate. Physical coupling between the anterior and
posterior neural plate facilitates the ability of posterior CE to generate forces which affect the anterior neural
plate. Subsequently, AC is initiated throughout the entire neural plate with no apparent temporal overlap
with CE.
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In mice, the scaffold protein Scribble maintains cell junction composition and mediates junctional remodel-
ling to co-ordinate both apical-basal and planar cell polarity [48]. By regulating tight and adherens junctions,
Scribble directs actomyosin dynamics to integrate CE and AC. Scribble mutations are associated with defects in
both CE and AC, where mediolateral convergence and columnar-to-wedge shape conversion fail in these two
processes, respectively. Using live imaging to track the frequency and polarity of cell intercalation in Scribble
mutant mouse embryos showed that Scribble regulates the proportion of cells that undergo anterior–posterior
versus mediolateral intercalation. This suggests a model where Scribble contributes to determination of the
polarity of cell intercalations while also promoting the formation of cellular rosettes, possibly through the medi-
ation of junctional remodelling. Although direct evidence is still lacking, Scribble may regulate cell shape
changes and intercalation through Rho-mediated actomyosin pulsations. Intriguingly, mice with mutations in
Scribble (Scribrumz) or the PCP proteins Vangl2 (VanglLp) and Ptk7 (Ptk7XST8) all have defects in AC and the
frequency or polarity of CE, however only the Scribrumz and Ptk7XST8 show significantly decreased CE of the
entire body axis. This suggests that mediolateral cell intercalation co-operates with AC and further unidentified
mechanisms to generate the force required for axis elongation and neural plate shaping.

Additional morphogenetic mechanisms
Neural tube closure
Closure of the neural tube occurs concurrently in amphibians but at multiple sites in mammals [3].
Historically, two evolutionarily conserved neural tube closure mechanisms have been proposed: the ‘purse-
string model’ and the ‘cell-crawling model’ [49]. It is now accepted that a combination of the two models is
important for neural tube closure, with significant differences in cellular dynamics between caudal and rostral
regions of the embryo. In mice, live imaging of neural tube closure showed that a combination of both purse-
string contractility and directional cell movement in the overlying surface ectoderm (‘cell crawling’) are required
to achieve hindbrain neuropore (HNP) closure [50]. Actomyosin purse strings form around the HNP and colo-
calise with E-cadherin in surface ectoderm, suggesting that surface ectoderm cells establish the first points of
contact. Subsequent closure of the HNP proceeds asymmetrically with faster closure in the rostral-to-caudal
direction. Simulations indicate that this is due to an increased radius of curvature at the caudal end of the gap
which constrains closure. This powerful combination of live imaging and modelling has provided new insights

Figure 2. The neural plate displays differential anterior–posterior behaviour.

(A) Representative temporal colour-coded maximum intensity projection of a time-lapse recording from a Xenopus embryo

expressing H2B-GFP. (B) Displacement map of single-cell tracks overlaid over H2B-GFP signal at t0. The posterior neural plate

cells move towards the midline. Anterior neural plate cells move anteriorly and ventrally. Adapted with permission from [23].

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 347

Biochemical Society Transactions (2023) 51 343–352
https://doi.org/10.1042/BST20220871

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/51/1/343/943218/bst-2022-0871c.pdf by guest on 24 April 2024

https://creativecommons.org/licenses/by/4.0/


into how the underlying tissue geometry influences actomyosin purse-string contraction and cell crawling to
drive the cellular dynamics of neural tube closure.
An additional mechanism of neural closure recently identified in the mouse PNP is integrin-mediated

anchorage [51]. Although integrin β1 is known to be important for neural tube closure, its exact role remained
unclear [52,53]. Recently, live imaging of mouse PNP closure suggested that the initial adhesion between
surface ectoderm cells from apposing epithelial layers requires integrin β1 at zippering sites. As the neural folds
elevate and become apposed, a basement membrane rich in fibronectin is deposited between the dorsal tips of
the neural folds and the overlaying surface ectoderm. Focal up-regulation and activation of the fibronectin
receptor component, integrin β1, in the surface ectoderm anchors cells to the fusion site, facilitating junctional
remodelling and the establishment of a semi-rosette cellular structure. This cell configuration allows the forma-
tion and maturation of novel cell-cell junctions between the opposing surface ectoderm cells, promoting zipper
progression and neural tube closure. The integrin-mediated basal anchorage mechanism for fusion and zipper-
ing of the mouse neural tube is indispensable since the loss of integrin β1, through either genetic or laser abla-
tion, halted zippering progression, causing failure of neural tube closure. Subsequent research showing that
disruption of the integrin regulator TMEM132A causes caudal NTDs in mice further supports the importance
of integrin β1 in neural tube closure [54].
Cellular protrusions have long been observed along the apposed edges of the closing neural tube in different

fixed model organisms [55–57]. Previously, SEM analysis has revealed the requirement of both membrane-like
ruffles and filopodia, suggested to originate from the surface ectoderm, for normal neural tube closure.
Additionally, conditional gene knockout experiments illustrated the role of small GTPases, Rac1 and Cdc42, as
molecular drivers for cellular protrusions [58]. However, only by pioneering ex vivo live imaging of mouse
neurulation was it first possible to observe the dynamics of these cellular projections [57,59]. In recent work,
live imaging of genetically labelled non-neural ectoderm revealed the involvement of different cellular projec-
tions, lamellipodia and filopodia, in promoting neural tube closure [60]. In the cervical spinal region, most cel-
lular projections were identified as lamellipodia while in regions of hindbrain closure the non-neural ectoderm
formed primarily filopodia-like cellular projections. High-speed imaging has also revealed the highly dynamic
nature of these cellular projections, extending and retracting quickly and in different directions. These results
also raise the possibility that filopodial projections may be used to pass positional information onto neighbour-
ing cells allowing cellular protrusions to always be localised directly ahead of the zipping fork. Although these
cellular protrusions have been observed for decades, it is still not clear how and why their morphology varies
along the rostral-caudal axis, and exactly how they may promote closure of the neural tube. Continuing
advances in live imaging technology are likely to provide much more insight into these enigmatic cellular
structures.

Apoptosis
Apoptosis has previously been proposed to be involved in tissue remodelling and neural tube formation, but its
exact contribution has remained elusive [61,62]. Recent work using live imaging of chick embryos coupled with
cleaved caspase 3 staining suggests that apoptosis may play a mechanical role in the morphogenesis of the
dorso-lateral hinge points (DLHP) during neural plate bending (Figure 3) [63].
The incidence of apoptosis increases in future DLHP regions immediately preceding tissue bending, and

inhibiting apoptosis prevents bending specifically at the DLHP. During apoptosis, the DLHP cells assemble an
apical-basal actomyosin cable which contracts, shortening the cell and deforming the apical surface. Laser abla-
tions demonstrated that the actomyosin cable generates a force that deforms the apical and basal surfaces of the
neuroepithelium. This force may also be transmitted to neighbouring cells, changing their shape and imparting
a ‘topological memory’ which persists after fragmentation of the apoptotic cell. In this way, the increased inci-
dence of apoptotic cells in the DLHP region may employ a ratchet-like mechanism to progressively bend the
neural plate.

Radial cell intercalation
Cell intercalation is the process by which neighbouring cells exchange places to drive morphogenesis during
development [64]. With implications for CE and polarised tissue bending, cell intercalation is also thought to
be force producing [65,66]. Live imaging in the chicken embryo recently provided the first visualisation of a
long-proposed role of cell intercalation in the formation of the secondary neural tube (Figure 4) [67,68]. The
final resolution of the central lumen was shown to be mediated by SMAD3-dependent cell intercalation [68].
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SMAD3 is a downstream modulator of the TFG-β signalling pathway with known roles in neuronal differenti-
ation and cell fate specification [69]. Together with the cell density-sensing YAP signalling pathway, SMAD3
mediates cell motility to allow the intercalation of central cells into the lateral walls of the neuroepithelium.
Inhibition of SMAD3 is associated with a multi-lumen phenotype in the caudal neural tube with YAP overex-
pression capable of rescuing the phenotype. This suggests that SMAD3/YAP signalling is required for normal
lumen resolution during secondary neurulation by mediating the motility of the central cell mass.

Perspectives
• Understanding the cellular, molecular and mechanical mechanisms of neural tube formation

allows for better clinical understanding of NTDs as well as other central nervous system
related problems.

Figure 3. Apoptosis generates mechanical forces to bend the neural plate.

(A) Schematic showing how apoptosis in the neural plate generates a force that deforms the apical and basal surfaces of the

neuroepithelium. This results in the bending of the neural plate, specifically at the dorsolateral hinge points (DLHP). (B) Cas3

and alpha-catenin 1 staining reveals the apoptotic cell. The apical and basal surface of the neuroepithelium are outlined.

Adapted with permission from [63].

Figure 4. The cellular processes involved in secondary neural tube formation.

The tailbud elongates as a result of neuromesodermal progenitor recruitment. The neuromesodermal progenitors become

confined and lineage restricted to neural progenitors, upon which lumen formation is initiated to form small cavities. The lumen

is resolved to form a single central lumen to complete the process of secondary neurulation. Adapted with permission from [68].
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• Live imaging in various animal models has revealed common cellular dynamics such as con-
vergent extension, apical constriction and cell intercalation drive morphogenesis of the neural
tube. How these dynamic processes vary along the anterior–posterior axis, interact with tissue
geometry and generate forces is now beginning to come to light.

• Continuing advancements in live imaging technologies, image analysis and computational
modelling will enable a greater understanding of how cellular dynamics are spatially and tem-
porally integrated to shape the developing neural tube.
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