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Chemotaxis signaling pathways enable bacteria to sense and respond to their chemical
environment and, in some species, are critical for lifestyle processes such as biofilm for-
mation and pathogenesis. The signal transduction underlying chemotaxis behavior is
mediated by large, highly ordered protein complexes known as chemosensory arrays. For
nearly two decades, cryo-electron tomography (cryoET) has been used to image chemo-
sensory arrays, providing an increasingly detailed understanding of their structure and
function. In this mini-review, we provide an overview of the use of cryoET to study che-
mosensory arrays, including imaging strategies, key results, and outstanding questions.
We further discuss the application of molecular modeling and simulation techniques to
complement structure determination efforts and provide insight into signaling mechan-
isms. We close the review with a brief outlook, highlighting promising future directions for
the field.

Introduction
Bacterial chemotaxis pathways couple the sensing of environmental chemical gradients to changes in
cellular motility and are the best-understood biological signaling systems owing to over half a century
of investigation [1–3]. Moreover, the roles played by chemotaxis in other important processes govern-
ing bacterial lifestyle, including biofilm formation, host–microbe interactions, and pathogenesis, are
becoming increasingly appreciated [4,5]. As such, chemotaxis pathways are central to our understand-
ing of basic microbial signaling and behavior and a detailed understanding of signal transduction
mechanisms within the comprising proteins promises to provide novel strategies for affecting bacterial
behavior in medicinal and technological applications.
The study of chemotaxis pathways has historically largely been conducted in the model organism

Escherichia coli, owing to its relative tractability in terms of the number of signaling components. An
overview of the E. coli chemosensory pathway is provided in Figure 1A. Briefly, the signaling state of a
chemoreceptor (red) is altered through the binding of chemoeffectors, which mediates the autopho-
sphorylation activity of an associated CheA kinase (blue). CheW (yellow) is required for the functional
coupling between receptors and CheA. Upon activation, CheA transfers a phosphoryl group from
bound ATP to the response regulator CheY (dark purple), which in turn becomes activated (CheY-P)
and can bind to the flagellar motor (magenta) to alter its direction of rotation. The direction of motor
rotation determines whether the cell ‘runs’ (swims straight) or ‘tumbles’ (changes to a new, random
direction). Thus, by controlling the relative amount of CheY-P through the receptor-mediated regula-
tion of CheA activity, environmental chemical information is coupled to the swimming pattern of the
cell. The CheA signal is eventually terminated by the removal of phosphate groups from CheY-P by
CheZ (teal). Additionally, an adaptation system is provided by CheR (pink) and CheB (green), which
add and remove methyl groups, respectively, at specific sites on the receptor to tune its response to
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ligand binding. An increase in receptor methylation increases CheA autophosphorylation and vice versa.
Although CheR is constitutively active, the rate at which CheB removes methyl groups is increased by phos-
phorylated via CheA, giving rise to a negative feedback loop that resets the pathway to baseline activity.
The structures and signaling mechanisms of chemoreceptors and CheA have been studied intensely [3,6].

Both are modular, multi-domain proteins, largely utilizing subtle allosteric changes to transduce sensory
signals. Canonical chemoreceptors are long (∼30 nm), mostly helical homodimeric proteins. They sense chemi-
cals using a periplasmic ligand-binding domain and initiate signals passing through a transmembrane four-
helix bundle and on to a cytoplasmic HAMP domain. After the HAMP domain, the signal is perceived by a
cytoplasmic coiled-coil domain containing three distinct modules: the methylation-helix bundle where adapta-
tional modification occurs, a flexible bundle containing the glycine hinge, and a signaling tip containing the
sites for CheA and CheW binding as well as receptor trimerization. CheA is a homodimeric histidine autoki-
nase with each protomer containing five distinct domains (P1–P5) connected by flexible linkers of varying
lengths. The dimerization (P3), ATP-binding (P4), and regulatory (P5) domains form a catalytic core, which
integrates into the array through interactions with receptors and CheW. The P1 and P2 domains are connected
to the P3P4P5 core through longer disordered linkers. The former domain contains the substrate histidine,
which accepts a phosphoryl group from an ATP molecule bound to P4, and the latter binds the response regu-
lator to facilitate the further transfer of the phosphoryl group.
Central to the chemotaxis response is the clustering of thousands of copies of chemoreceptors, CheA, and

CheW into large, transmembrane signaling complexes known as chemosensory arrays (Figure 1B) [3,7]. The
functional unit of the chemosensory array, known as the core-signaling unit (CSU), contains six receptor
dimers, organized two receptor trimers-of-dimers (TOD), a single CheA dimer, and two or four CheW mono-
mers (Figure 1B) [8]. The CSU is the minimal complex required to place CheA autophosphorylation under
receptor control, allowing it to be altered by ligand binding and adaptational modification [8]. Neighboring
CSUs are structurally and functionally coupled through an interlocked ‘baseplate’ formed by hexameric rings
containing the CheA regulatory domain and CheW, while two additional flanking CheW molecules can associ-
ate with the CSU to produce hexameric rings containing only CheW [9,10]. Importantly, the highly ordered
and interconnected nature of chemosensory arrays enables long-range cooperative responses, which give rise to
impressive signal integration, amplification, and adaptation features that are distinctive of chemotaxis pathways
[11–14]. To understand chemotaxis signaling, therefore, a detailed description of signaling within and between
CSUs is required.

Figure 1. E. coli chemotaxis signaling.

(A) Schematic of the E. coli chemotaxis signaling pathway, highlighting component interactions connecting the periplasmic

chemical environment to the direction of flagellar motor rotation as described in the main text. (B) Schematic of the E. coli

chemosensory array, shown as the level of the array baseplate, illustrating the hexagonal arrangement of receptor

trimers-of-dimers (TOD) interconnected by rings of CheA and CheW (pink circle) and CheW only (green circle). A single core

signaling unit, along with two flanking CheW molecules, is isolated to the left. Chemoreceptors are shown in red and pink,

CheA in shades of blue, and CheW in gold. Panel (B) was adapted from [52] with permission.
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Despite impressive results using techniques such as X-ray crystallography and NMR spectroscopy, high-
resolution information on the CSU has mostly been limited to individual domains and sub-complexes due to
its large size and dynamic nature. Cryo-electron tomography (cryoET) provides a powerful means to study
large and heterogeneous biomolecular complexes such as chemosensory arrays that are intractable using other
structure determination techniques [15–17]. In this mini-review, we will provide a broad overview of the use of
cryoET to study bacterial chemosensory array structure and function, including imaging strategies, key results,
and outstanding questions. We will further highlight the application of molecular modeling and simulation
techniques to complement structure determination efforts and provide mechanistic insight, followed by a brief
discussion on the outlook of the field. Finally, although the focus of the present review is on chemosensory
arrays, we wish to note here the recent use of cryoET to study the ‘output end’ of chemotaxis pathways, namely
the bacterial flagellar motor, which has lately provided insight into the mechanisms of CheY signaling as well
as motor assembly and control [18–22].

CryoET analysis of bacterial chemosensory arrays: an
overview
Over the years, chemosensory arrays have been imaged using cryoET in multiple biological contexts, which
exploit the trade-off between sample thickness and attainable resolution, while attempting to remain as true to
their native environment as possible (Figure 2A) [23]. Whole cells were first used to obtain images of extended
zipper-like chemoreceptor structures, resulting from receptor overexpression [24,25]. Shortly thereafter, the first
images of intact chemosensory arrays in E. coli [26] and C. crescentus [27] were obtained, establishing their
overall makeup and hexagonal architecture. Briegel and co-workers subsequently demonstrated that this hex-
agonal array architecture was conserved across a wide range of bacteria and archaea [28,29], suggesting the
broad conservation of a basic chemotaxis signaling mechanism. Given the thickness of most cells, however, the
resolutions obtainable when imaging whole cells are typically limited to 30–40 Å, preventing the separation of
individual proteins within the resulting density maps.
To produce increasingly detailed images of chemosensory arrays, several strategies have been developed to

reduce the thickness of samples before imaging (Figure 2A). The most common approach is the use of lysed
cells, in which treatment with penicillin or lysozyme [9,30] or the introduction of an inducible phage E-gene
[31] is used to leak the cell’s cytoplasmic content. Additionally, manipulation of the cellular division machinery
can be used to produce array-containing minicells [10,32–35], for instance, through mutations to the Min
system which cause budding near the cell poles. The lysed cell and minicell approaches have the benefit of
improving resolutions to 15–30 Å, or even higher [36], while maintaining the complete chemosensory complex
in a near-native membrane environment. For high-resolution structure analysis, an in vitro reconstituted
system has also been developed, which involves the use of purified recombinant E. coli Tar cytoplasmic frag-
ments (TarCF), CheA, and CheW to form the array lattice on a 2D lipid monolayer [37,38]. This system offers
several additional advantages, including a well-defined composition and large patches of well-ordered arrays,
that permit higher resolutions (8–15 Å). However, receptor truncation limits the obtainable functional informa-
tion to the baseplate region. Thus, each imaging context has its inherent strengths and weaknesses and a com-
plete structural picture of the chemosensory array is likely to require the consolidation of insights from each.
Although beyond the scope of this review, it’s important to note that increases in resolution have also been
greatly helped by advances in hardware and image processing, particularly sub-tomogram averaging (STA)
techniques for which repetitive structures like chemosensory arrays are ideally suited [39].
Figure 2B highlights several structural milestones along with their associated imaging contexts. Early cryoET

studies in E. coli employed lysed cells (EMD-5545) [9] and minicells (EMD-5404) [10] to establish a molecular
picture of the array baseplate, namely a hexagonal lattice of receptor TODs interconnected by hexameric rings
involving CheA and CheW (Figure 1B). Building on this work, subsequent studies in lysed cells imaged chemo-
sensory arrays carrying receptor mutations designed to induce distinct signaling states, enabling the observation
of concerted structural changes in CheA [40] and the cytoplasmic region of the receptor TOD (EMD-4492)
[30], albeit at resolutions of 20 Å or lower. Use of the in vitro monolayer system considerably improved the
resolution of the baseplate region to ∼12 Å, providing unambiguous visualization of the CheA dimerization
(P3) and catalytic (P4) domains as well as CheW (EMD-6319) [37]. Despite these advances, the membrane-
proximal regions of the complex remained unresolved until a recent study from Burt and co-workers reported
the first full-length CSU structure from E. coli minicells (EMD-10160) [33]. At resolutions of mostly between
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15–30 Å, the structure exhibits continuous receptor densities, including for the HAMP, transmembrane, and
ligand-binding domains, although with a weaker density. At the same time, improvements in image processing
have allowed the CSU baseplate to be imaged to sub-nanometer resolution using the in vitro monolayer system
(EMD-10050) [38], revealing individual helices within the receptor signaling tips and beta-barrel structures
within the CheA regulatory domain (P5) and CheW, thereby, precisely setting their interaction interfaces.
Taken together, these results form a complete basic picture of CSU structure in E. coli, providing a ground state
for testing mechanistic hypotheses. As described below, such data can be further combined with computational
techniques to yield high-fidelity molecular models of the CSU and extended array.

Organizational variability in chemosensory arrays
As previously noted, much of our structural understanding of chemosensory arrays comes from E. coli due
both to its relative simplicity, in terms of the number of pathway components, and our ability to readily
manipulate its physiology genetically. Nevertheless, most motile bacteria possess multiple, more complex, che-
mosensory pathways operating simultaneously and controlling a wide range of responses [41–44], implying a
richness of chemosensory machinery. Indeed, despite the apparent ubiquity across species of the hexagonal

Figure 2. Overview of cryoET applications to chemosensory arrays.

(A) Schematics of the primary imaging contexts used to visualize chemosensory arrays. A range of vitrified sample thicknesses

and attainable resolutions are given for each context. In general, as the thickness of a vitrified sample decreases, the attainable

resolution increases, but often at the expense of fidelity to the native environment. (B) Renderings of representative core

signaling unit (CSU) structures published in key studies and shown in chronological order from left to right. The EMDB

accession code and associated imaging context are also indicated. Figure panels were kindly contributed by Dr. Alister Burt.

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).1598

Biochemical Society Transactions (2022) 50 1595–1605
https://doi.org/10.1042/BST20220191

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/50/6/1595/941108/bst-2022-0191c.pdf by guest on 09 April 2024

https://creativecommons.org/licenses/by/4.0/


architecture of transmembrane chemosensory arrays at the receptor level [28,29], recent cryoET studies are
revealing a diversity of baseplate compositions and organizations [45–47] as well as the existence of cytoplasmic
chemosensory arrays that are essential for normal chemotaxis [48,49]. These topics have recently been covered
comprehensively in an excellent review by Yang and Briegel [50].
Here we will detail one particularly intriguing example of array variability: the recent observation of an alter-

native array architecture in Treponema denticola [51] and E. coli minicells [52], which differs markedly from
the canonical one observed in native E. coli cells. Indeed, although the alternative and canonical architectures
appear the same at the level of the receptors, they differ considerably in baseplate organization: the canonical
architecture contains two types of baseplate hexameric rings, namely (A.P5/W)3 and (W)6, with CheA orga-
nized on into a kagome lattice, whereas the alternative architecture has only a single type of baseplate ring,
namely (A.P5/W/W)2, and CheA is organized into linear stripes [51,52]. Thus, although the CSU itself remains
unaltered, the flanking CheW molecules take on an essential role in the formation of the alternative architec-
ture, whereas in the canonical case they reinforce an existing lattice [52,53]. As the relative abundance of (W)6
rings in native E. coli arrays affects response cooperativity [53], the two architectures may therefore possess dif-
ferent inherent cooperativities due to their varying CSU connectivity. Comparative studies, therefore, might
provide a potential means to investigate certain emergent signaling features of the chemotaxis pathway [11,12].
What factors might give rise to this alternative architecture? In the case of the T. denticola arrays, in which

the characteristic stripes of CheA were observed to align with the cell axis, it was proposed that the observed
architecture might be necessary to accommodate high membrane curvature [51]. Observations of the same
architecture in E. coli minicells, which are considerably less curved than T. denticola cells, as well as in flat in
vitro monolayer arrays suggest additional factors may also be at play [52]. For instance, the differential role of
the flanking CheW molecules may suggest the relative expression levels of the different array components
could favor one organization over the other [52,54]. Nevertheless, it seems clear that the membrane plays a
considerable role in array assembly, suggesting that these observations may be related to another long-standing
question in the field, namely the mechanism of polar localization. Although poorly understood, polar localiza-
tion in various systems has been linked to membrane curvature and cardiolipin concentration [55,56], complex
interactions with the ParA/MinD family [57] and TOL/PAL complexes [58], and the inherent geometry of
receptor TODs [59]. CryoET provides a unique and promising tool to make headway on these important issues.

Integrative modeling and molecular simulation of
chemosensory arrays
Despite the remarkable insights into chemosensory array structure gained by cryoET, resolutions obtained have
so far been limited to ∼8 Å, but are generally much lower for membrane-embedded arrays (15–30 Å), prevent-
ing the de novo assignment of atomic structure to the density map. The use of integrative modeling and
molecular dynamics (MD) simulation techniques has therefore been necessary to extend the chemical interpret-
ability of obtained cryoET structures, enabling domain- and residue-level insights not possible otherwise. Early
studies relied on rigid docking to position high-resolution structures, obtained via X-ray crystallography, NMR,
or homology modeling, within a density map, providing an overall picture of array organization and rough
interaction interfaces between array components [9,10]. As resolutions improved, flexible refinement techniques
such as Molecular Dynamics Flexible Fitting (MDFF) [60,61] provided a more robust interpretation of cryoET
densities. Such techniques use MD simulation to optimize the conformations of high-resolution structures
using a potential generated explicitly from a density map. MDFF has been applied to flexibly refine receptor
TOD models into E. coli maps corresponding to distinct signaling states, highlighting concerted changes in the
mobility of the P1 and P2 domains of CheA [40] and suggesting that TODs may undergo transitions between
an expanded and compact conformation during signaling, enabled by receptor bending at the HAMP domain
and/or glycine hinge [25,30,62].
The application of computational modeling has been especially important for the construction of all-atom

models based on in vitro monolayer cryoET data [37,38]. Here, overall resolutions allow for reliable placement
of individual protein domains, however, conformational heterogeneity within the sample results in structural
ambiguities that require systematic assessment. Initial efforts used existing X-ray crystallography structures
from T. maritima along with MDFF to construct an all-atom model of the cytoplasmic portion of a chemosen-
sory array (PDB 3JA6) [37]. Subsequent large-scale MD simulations identified a novel conformational change
in CheA, namely the dipping of the catalytic P4 domain, as well as critical stabilizing residues. Building on
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these results, an all-atom model of the E. coli CSU baseplate (PDB 6S1K) was constructed in a follow-up study
using higher-resolution in vitro monolayer cryoET data and homology modeling (Figure 3A) [38]. Again,
all-atom MD simulations were used to interrogate the conformation landscape of CheA, identifying two classes
of CheA conformation, namely an undipped and dipped state (Figure 3B) analogous to those identified previ-
ously [37], and highlighted structural changes in the critical flexible linker connecting the P3 and P4 domains
[38,63]. These computational predictions have since been corroborated by multiple studies using different tech-
niques [64–66]. Additionally, modeling has been used to gain insights into CheA function, particularly the
potential placement of the P1 and P2 domains, through the construction of models of CSU-like T. maritima
receptor fold-on complexes using molecular envelopes from Small Angle X-ray Scattering (SAXS) informed by
disulfide cross-linking and ESR spectroscopy data [65].
Most recently, an all-atom model of the full-length E. coli transmembrane CSU was presented (Figure 3C)

[33]. Consisting of homology models for CheA and CheW as well as a full-length model of E. coli Tsr con-
structed using existing X-ray crystal structures and disulfide cross-linking data, the model was conformationally
refined to cryoET data from E. coli minicells using MDFF. Given that the CSU is the minimal complex required
for basic receptor-mediated kinase control [8], such a model provides a potential workhorse for the in silico
investigation of signaling mechanisms. Previous all-atom MD simulations of isolated chemoreceptor fragments
have provided insight into signal transduction within the transmembrane domain [67,68] and cytoplasmic

Figure 3. Recent models of chemosensory array structure.

(A) Overlay of 8.4 Å in vitro monolayer map (EMD-10050) and resulting all-atom model of the E. coli core-singling unit (CSU)

baseplate (PDB 6S1K), shown from the side (left) and the top as slices through the baseplate (right, top) and CheA.P4 domains

(right, bottom). (B) Undipped (left) and dipped (right) conformations obtained from computational analysis of CheA.P4

conformational landscape. (C) Overlay of E. coli minicell map (EMD-10160) and resulting all-atom model, shown from the side

(left) and the top as slices through the periplasmic domains (right, top) and baseplate (right, bottom). (D) All-atom model of the

transmembrane chemosensory array, assembled from the CSU model in (C). In all panels, chemoreceptors are colored in red,

CheA in blue, and CheW in gold. Panels (A) and (B) were adapted from [38] with permission; panel (C) was adapted from [33]

with permission.
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domains [69,70], while coarse-grained simulations have been used to study overall receptor dynamics [71,72]
and the effects of adaptational modification [73]. Given the CSU’s size (millions of atoms) and complexity as
well as the subtlety of the allosteric changes underlying signaling, large-scale all-atom simulations on the micro-
second timescale are required to investigate signaling in sufficient detail. While such simulations are not yet
routine, recent advances in computing power as well as optimized MD codes render them no longer prohibitive
[74–76]. Additionally, coarse-grained simulations, using for example the Martini [77] or shape-based [78]
approaches, provide a means to study even larger, multi-CSU models (Figure 3D), particularly
membrane-related phenomena [79,80]. Finally, with the recent development of AlphaFold2 [81,82], high-
quality models of full-length sensory proteins (e.g. chemoreceptors and CheA) can be constructed given only a
sequence. Historically, high-resolution experimental structural information has been sparse, outside of a few
organisms. AlphaFold2 thus provides an efficient means to expand the structural repertoire amenable to
molecular simulations. The combination of cryoET, AlphaFold2, and molecular simulations, therefore, repre-
sents a powerful multi-scale tool for interpreting a wide range of existing data and designing further experi-
ments to understand signaling mechanisms in diverse species.

Outlook for cryoET analysis of chemosensory arrays
Moving forward, researchers will continue to utilize a wide range of techniques to form a more comprehensive
molecular picture of chemotaxis signaling in E. coli and other bacteria. CryoET will continue to play a central
role in this effort. Forthcoming cryoET investigations will focus on two principal aims: (i) achieving
near-atomic resolution structures of the E. coli CSU and larger array and (ii) characterizing array structure and

Figure 4. Workflow for near-atomic and time-resolved cryoET studies of chemosensory arrays.

(A) Near-atomic resolution studies of in vitro monolayer systems. After preparing the monolayer systems, which may contain

signaling components carrying functional mutations (ON, wild-type, OFF), a standard procedure is used to prepare samples for

the microscope. (B) A proposed workflow for time-resolved studies of lysed cells and minicells. After preparing the biological

samples, a FRET-based kinase assay is used to determine functionally interesting time points based on chemosensory array

kinetics (e.g. in response to treatment with a chemoeffector). Grid samples are then exposed to stimulus in a timed fashion (e.

g. through the photolysis of a caged ligand) and vitrified at chosen time points to capture signaling states of interest. (C)

Structure determination for both protocols follows a similar workflow based on a standard cryoET structure analysis pipeline,

complemented by computational modeling techniques.
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dynamics in distinct signaling states. Continued improvements in hardware and image processing combined
with the in vitro monolayer system, potentially stabilized via strategic mutation, has the potential to provide
near-atomistic resolution structures (Figure 4A). Such structures could then be combined with molecular simu-
lation techniques to further provide information on the relative dynamics of each state. Additionally, the more
native-like structures emerging from future studies using lysed cells and minicells, although likely to be at a
lower resolution, will provide critical conformational information that can more readily be adapted at the bio-
logical level. For the most part, the technical and methodological aspects required to carry out the above
studies are in place. Another up-and-coming approach for studying complex biomolecular processes is time-
resolved cryoEM [83,84]. While still under development for chemotaxis applications, time-resolved cryoET pro-
mises to provide a powerful means of achieving unique state-dependent information (Figure 4B). For example,
FRET-based kinase assays could be used to identify interesting time points in the array response to a specific
chemoeffector. This information could then be used in tandem with the timed chemoeffector-treatment of grid
samples (e.g. through the photolysis of caged ligands) to develop a vitrification schedule, down to the millisec-
ond time scale, that captures key signaling states. Ultimately, such time-resolved information can be combined
with molecular models to produce movies of chemotaxis signal transduction at near-atomic resolution.

Perspectives
• Chemotaxis pathways are the best-understood biological signaling systems and serve as a

powerful tool for investigating the molecular mechanisms of protein signal transduction. As
chemotaxis plays an important role in the infection process of numerous animal and plant
pathogens as well as the formation of biofilms, a detailed molecular understanding of chemo-
taxis signaling would greatly enhance our ability to affect bacterial behavior for medicinal and
technological applications.

• We now have a basic understanding of the structure of the E. coli chemotaxis machinery,
owing in large part to cryoET imaging of chemosensory arrays. At the same time, numerous
structural, biochemical, biophysical, and computational approaches have shed light on critical
aspects of signaling within the core-signaling unit (CSU) and the extended array. A comprehen-
sive molecular picture of signaling, however, has so far remained elusive, owing to the lack of
high-resolution descriptions of array structure and dynamics in distinct signaling states.

• Future cryoET applications will seek to modify existing in situ and in vitro imaging contexts to
provide increasingly detailed images of the CSU in varying signaling states, hopefully achiev-
ing near-atomic resolution in certain cases. Molecular modeling and simulation techniques will
provide a complementary and independent tool to access high-resolution structural and
dynamic detail. Down the road, the development of time-resolved cryoET methodologies
should provide millisecond-resolved structural information on native arrays in experimentally
controlled signaling states.
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