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Oxylipins are enzymatic and non-enzymatic metabolites of mono- or polyunsaturated
fatty acids that encompass potent lipid mediators including the eicosanoids and docosa-
noids. Previously considered of low interest and often dismissed as ‘just fat’, octadeca-
noid oxylipins have only recently begun to be recognized as lipid mediators in humans. In
the last few years, these compounds have been found to be involved in the mediation of
multiple biological processes related to nociception, tissue modulation, cell proliferation,
metabolic regulation, inflammation, and immune regulation. At the same time, the study
of octadecanoids is hampered by a lack of standardization in the field, a paucity of ana-
lytical standards, and a lack of domain expertise. These issues have collectively limited
the investigation of the biosynthesis and bioactivity of octadecanoids. Here, we present
an overview of the primary enzymatic pathways for the oxidative metabolism of 18-
carbon fatty acids in humans and of the current knowledge of the major biological activity
of the resulting octadecanoids. We also propose a systematic nomenclature system
based upon that used for the eicosanoids in order to avoid ambiguities and resolve mul-
tiple designations for the same octadecanoid. The aim of this review is to provide an
initial framework for the field and to assist in its standardization as well as to increase
awareness of this class of compounds in order to stimulate research into this interesting
group of lipid mediators.

Introduction
Oxylipins are broadly defined as enzymatic metabolites of mono- or polyunsaturated fatty acids
(PUFAs) produced by at least one step of mono- or dioxygenase-catalyzed oxygenation as well as
non-enzymatic products [1]. These lipids are involved in multiple biological processes including
inflammation and immune activation, tissue modulation and cellular proliferation, ion transport
and airway smooth muscle contraction [2–6]. Oxylipins can be classified according to the length
of the carbon chain of the parent fatty acid (e.g. docosanoids (C-22), eicosanoids (C-20), and octa-
decanoids (C-18)). The most well-known oxylipins are the eicosanoids, which are produced from
20-carbon-containing PUFAs (e.g. dihomo-γ-linolenic acid, arachidonic acid, and eicosapentaenoic
acid (EPA)) and have been demonstrated to exert profound function in multiple physiological pro-
cesses [4,6,7]. More recently, the docosanoids have emerged, with a focus on the omega-3 fatty
acid-derived specialized pro-resolving mediators (SPMs) (e.g. resolvins, protectins, and maresins)
[8]. In contrast, the role of octadecanoids in human physiology has been largely overlooked as
opposed to plant biology. In plants, octadecanoids play a pivotal role as the main class of phyto-
hormones and are involved in the regulation of biotic and abiotic stress signaling, as well as in
plant growth and development processes, especially via the Jasmonate pathway [9]. In mammals,
the 18-carbon fatty acids have to date been primarily considered as building blocks for
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longer-chain PUFAs given that linoleic acid (LA) and α-linolenic acid (ALA), possessing unsaturations on
the ω-6 and ω-3 carbon, respectively, are essential fatty acids that cannot be produced by mammalian
enzymatic systems (Figure 1) [10].
The 18-carbon fatty acids are by far the most abundant long-chain PUFAs consumed in the western diet,

with LA and ALA accounting for 7.2% and 0.7% of the total energy intake, respectively, in the average USA
diet [11]. These levels mark a 3-fold and 2-fold increase for LA and ALA, respectively, compared to the early
20th century. At the same time, only a small fraction of these dietary 18-carbon fatty acids is converted to
longer-chain PUFAs (e.g. only 10% of ALA is elongated to EPA) [12]. The majority is incorporated into
membranes where it has structural functions, but can be oxidized by the same enzymatic systems that form
eicosanoids or by non-enzymatic oxidation, both in situ or after release by phospholipases [13]. The
18-carbon PUFAs are generally poorer substrates for oxidative enzymes, compared to 20- or 22-carbon
PUFAs [14,15]; however, their endogenous levels are normally higher [16,17] which is reflected in the subse-
quent oxylipin concentrations. For example, human serum levels of selected octadecanoids were reported to
be 5 times higher compared to oxylipins from longer-chain PUFAs (the summed concentration of the 21
detected octadecanoids was ∼158 ng/ml, compared to ∼29 ng/ml for the 54 detected eicosanoids/docosanoids
[16]). The bioactivity of the majority of these compounds is still largely unexplored [6], and dedicated analyt-
ical methods are needed in order to expedite their study [18]. Recent studies have started unveiling the
importance of octadecanoids in human physiology, highlighting their involvement in inflammation and
immune modulation [19–21], in the mediation of metabolic processes [22–25], in cell proliferation and tissue
structure modulation [26], as well as in pain transmission and nociception [27]. Simultaneously, the expan-
sion of knowledge on octadecanoids is hampered by a lack of field harmonization, a paucity of analytical
standards, and limited domain expertise.
The scope of this review is to provide a framework on the knowledge of octadecanoids to date, focusing on

the primary oxidative metabolism mechanisms and products in humans for the major 18-carbon fatty acids:
oleic acid (OA), LA, ALA, and γ-linolenic acid (GLA). The primary known biological effects exerted by these
metabolites in humans are also briefly discussed, while metabolic processes exclusive to plants are excluded
because many comprehensive reviews already exist [9,28,29]. Additionally, we propose a harmonization of the
octadecanoid nomenclature based upon defined rules in use for eicosanoids.

Figure 1. Biosynthesis pathways for ω-6 and ω-3 polyunsaturated fatty acids (PUFAs) and the resulting class of oxylipin.

Linoleic (LA) and α-linolenic acid (ALA) are essential fatty acids that must be obtained via the diet. These essential fatty acids are converted via a

series of desaturation and 2-carbon elongation processes to produce the longer-chain PUFAs.
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Octadecanoid nomenclature
The absence of a set nomenclature is a limiting factor for the development of the octadecanoid field, introdu-
cing unclarity in the comparison of different studies. Octadecanoids are generally abbreviated following the
same criteria used for eicosanoids; however, the abbreviations are sometimes used ambiguously (e.g. ‘T’ indicat-
ing both trienoic and tetraenoic, depending on the user [30]), or replaced by generic or research group-specific
abbreviations (e.g. 9-KOTrE defined as 9-oxo-OTA (9-oxo-octadecatrienoic acid) [31], or 10-HOME described
as Hydroxide A or HYA [32]). To harmonize octadecanoid nomenclature, we propose the following explicitly
defined abbreviation system, considering that the oxidative metabolism of 18-carbon fatty acids results in the
introduction of a limited number of oxygenated functions, namely hydroperoxides, epoxides, ketones, monohy-
droxyls, diols, and triols. The abbreviation of each compound starts with the position of the main oxygenated
function (multiple different functions are expressed in order of decreasing polarity), followed by the abbrevi-
ation of the function (‘Hp’ for hydroperoxides, ‘H’ for mono-hydroxyl, ‘DiH’ for diols, ‘TriH’ for triols, ‘K’ for
oxo, and ‘Ep’ for epoxide), then by a capital ‘O’ indicating ‘octadeca’ (similarly to how ‘E’ is used for ‘eicosa’),
and then by the number of unsaturations (‘M’: mono-unsaturated; ‘D’: di-unsaturated; ‘Tr’: tri-unsaturated; ‘T’:
tetra-unsaturated). Finally, an ‘E’ (for ‘enoic’) indicates that the species is unsaturated. For saturated com-
pounds the ‘E’ is replaced by ‘DA’ (for ‘DecAnoic’). With this system, 9-oxo-octadecatrienoic acid is 9-KOTrE,
while 10-hydroxyoctadecenoic acid (10-hydroxy-octadecamonoenoic acid) is 10-HOME. A scheme showing
the application of this nomenclature to LA and ALA metabolites is shown in Figure 2. When known, the chir-
ality and geometry should be indicated in terms of the hydroxy and epoxide moieties and the unsaturation(s)
(e.g. R/S, cis/trans, threo/erythro, E/Z). According to IUPAC nomenclature, a ‘=O’ moiety bonded to the corre-
sponding numbered carbon is indicated by the term ‘oxo’(33); however, we propose the use of ‘K’ (‘keto’) to

Figure 2. Proposed abbreviated nomenclature system for octadecanoids.

Compound names start with the positioning of the oxygenated moiety on the carbon backbone. The number(s) is followed by the abbreviation of

the moiety (‘Hp’ for hydroperoxides, ‘H’ for mono-hydroxyl, ‘DiH’ for diols, ‘TriH’ for triols, ‘K’ for oxo, and ‘Ep’ for epoxide) and by the alkyl chain

length (for octadecanoids, a capital ‘O’) and by the number of unsaturations (‘M’: mono-unsaturated; ‘D’: di-unsaturated; ‘Tr’: tri-unsaturated; ‘T’:

tetra-unsaturated). The last letter indicates if the compound is unsaturated (‘E’ for enoic, unsaturated; ‘DA’ for decanoic, saturated). For example,

with this system, 9,10-epoxy octadecanoic acid is 9(10)-EpODA.
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avoid cacophonic and difficult to pronounce names such as 9-Oxo-ODE, and to maintain an identifiable link
in series of metabolites (e.g. the series of LOX-derived 9-HpODE — 9-HODE — 9-KODE). For species posses-
sing more than one oxygenated function, the functions are expressed in order of increasing polarity (hydroper-
oxyls > hydroxyls > ketones > epoxides). The following suffixes are used: ‘Hp’ for hydroperoxides, ‘OH’ for
hydroxyls, ‘DiOH’ for diols, ‘TriOH’ for triols, and ‘oxo’ for ketones (e.g. 10(E)-9-oxo-12(13)-EpOME, 9
(Z)-11-OH-12(13)-EpOME). The position of the double bonds is always indicated for metabolites presenting
multiple functions. A list of the full nomenclature for many of the octadecanoid species discussed in this paper
is available in a recent publication [18].

Oxidative metabolism of 18-carbon fatty acids
Oxidative metabolism of 18-carbon fatty acids is primarily performed by enzymes belonging to the cyclooxy-
genase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP450) families. Humans possess two COX iso-
forms, COX-1 and COX-2, both of which are heme-containing dioxygenases with peroxidase and COX
functions. While COX forms cyclic oxylipins from 20- and 22-carbon fatty acids via the COX activity, inter-
action with 18-carbon fatty acids is limited to the peroxidase activity [14]. The expression of these isoforms is
generally different; COX-1 is ubiquitously expressed in tissues while COX-2 is synthesized in response to
inflammatory stimuli [33,34]. This distinction, however, is not strict and the inducibility of COX-1 following
an external stimulus, as well as constitutive expression of COX-2 in many tissues, have been observed [35].
Both isoforms have strong affinity for arachidonic acid, from which they produce eicosanoids including prosta-
glandins and thromboxanes, but show variable affinity for 18-carbon PUFAs. While LA is a substrate for both
isoforms, ALA is metabolized only by COX-2 [14,36].
LOX are also dioxygenases, but do not contain a heme moiety. Humans possess genes encoding for six LOX

isoforms: 5-LOX, 12(S)-LOX, 12(R)-LOX, 15-LOX-1, 15-LOX-2, and eLOX3 [37]. 5-LOX and 15-LOX-1 are
highly expressed in leukocytes, with 15-LOX-1 highly expressed in the lungs [38], while 12(R)-LOX and eLOX3
are exclusively expressed in the epidermis [39]. 15-LOX-2 and 12(S)-LOX are expressed in a multitude of
tissues including skin, prostate, liver, colon, kidneys, and brain [40]. The different isoforms show variable affin-
ity for 18-carbon fatty acids. For example, LA is a good substrate for 15-LOX-1, but has poor affinity for
15-LOX-2, and is not a substrate for 12(S)-LOX [41]. The eLOX3 isoform can metabolize 9(R)-HpODE, but no
information on its affinity for other C-18 species has been reported [42].
Both COX and LOX catalyze the specific abstraction of a hydrogen atom from bis-allylic positions in PUFAs

possessing a 1,4-cis pentadiene moiety. While COX abstracts specifically the pro-(S) proton [43], abstraction by
LOX depends on the enzyme isoform [44]. Oxidation by COX and LOX results in the production of stereo-
chemically defined hydroperoxides, which are subsequently reduced to monohydroxyls by peroxidases.
Monohydroxyls are stable LOX metabolites that can also be further oxidized to ketones by fatty acid dehydro-
genase [45,46]. The main stable COX metabolites of LA are 9(R)- and 13(S)-HODEs, with a preference for the
9-isomer (82% and 67% for COX-1 and COX-2, respectively) [47], whereas LOX produces 13(S)-HODE. The
epidermal isoform 12(R)-LOX is able to produce 9(R)-HODE as well [48]. Finally, eLOX3 has a hydroperoxide
isomerase function that can metabolize 9(R)-HpODE and 13(S)-HpODE into hydroxy-epoxides (11-OH-9(10)-
EpOME and 13-OH-9(10)-EpOME from the former, 9-OH-12(13)-EpOME and 11-OH-12(13)-EpOME from
the latter), which can be further hydrolyzed to triols (9,10,13-, 9,10,11-, 11,12,13-, and 9,12,13-TriHOMEs,
with stereochemistry depending on the formation route) or oxidized to the respective epoxy-ketones [48]. ALA
and GLA are also metabolized by LOX, with 15-LOX-1 transforming ALA to 9(S)-HOTrE, which is subse-
quently oxidized to 9-KOTrE, while 5-LOX produces 13(S)-HOTrE (and 13-KOTrE) [31,49], whereas GLA is
metabolized to 6(Z),9(Z),11(E)-13-HOTrE (13-HOTrE-γ) and 6(Z),8(E),12(Z)-10-HOTrE by LOX enzymes in
human platelets [50]. Additionally, since ALA and GLA possess two pentadiene moieties, they can be targeted
by two sequential LOX oxidation, yielding non-vicinal diols. This mechanism has been reported for ALA
resulting in the production of 9,16-DiHOTrE [51], but not for GLA. COX oxidation of ALA results in the for-
mation of 12-HOTrE following hydrogen abstraction from the ω-5 position [14]. While GLA is known to be a
substrate of COX-2, the resulting products have not been characterized [14]. As opposed to the eicosanoids, the
production of cyclic metabolites from COX oxidation has not been described for octadecanoids.
CYP450 is a superfamily of ubiquitous monooxygenases participating in reductive, oxidative, and peroxida-

tive metabolism of a variety of endogenous chemicals and xenobiotics, including fatty acids [52]. Humans
possess 57 genes coding for CYP enzymes, widely distributed in many tissues and highly expressed in brain,
liver, lungs, and kidneys [53]. CYP enzymes are deeply involved in lipid metabolism, for which they catalyze
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four main reactions: epoxidation, bis-allylic hydroxylation, hydroxylation with double-bond migration (allylic
hydroxylation), and ω-side chain hydroxylation [54]. All 18-carbon fatty acids are CYP450 substrates and are
mainly metabolized to cis-epoxides, which can subsequently be converted to vicinal erythro-diols by the soluble
epoxide hydrolase (sEH) [55]. Stable epoxides and related vicinal diols have been reported for LA
(9(10)-EpOME and 12(13)-EpOME and the respective diols 9,10-DiHOME and 12,13-DiHOME [55]), ALA
(9(10)-EpODE, 12(13)-EpODE, 15(16)-EpODE and the respective diols 9,10-DiHODE, 12,13-DiHODE, and
15,16-DiHODE [56]), and OA (9(10)-EpODA and 9,10-DiHODA [57]), whereas only epoxides have been
reported for GLA (6(7)-EpODE-γ, 9(10)-EpODE-γ, and 12(13)-EpODE-γ [56]). Numerous mono-hydroxides
produced by the other described mechanisms have been reported for LA [55,58], while ω-side chain hydroxyls
have been also reported for ALA and OA [59,60]. An overview of the metabolic mechanisms applied to the
oxidation of LA by the discussed enzymatic systems is shown in Figure 3.
In addition to human enzymatic systems, octadecanoids can also be produced by symbiotic microbes and

fungi, such as the gut microflora, and from pathogenic microorganisms. These microorganisms can contribute
to the octadecanoid pool of the host by metabolizing both 18-carbon fatty acids and oxylipins (e.g. by hydro-
lyzing EpOMEs to DiHOMEs via bacterial EH [19]). Moreover, gut bacteria possess specific sets of enzymes
responsible for the saturation of 1,4-cis pentadienes, which are toxic [61,62], resulting in the production of spe-
cific octadecanoids that can be transferred to the host. The identified metabolites from LA and ALA and the
enzymes responsible for their formation in Lactobacillus plantarum were first described by Kishino et al. [61].
Together with endogenous metabolites, a large variety of plant and fungal octadecanoids can also be intro-

duced via the diet. Plant and fungi contain high concentrations of octadecanoids, which can have structures
specifically derived by plant enzymatic systems or share the same structure of human metabolites. It is, there-
fore, often challenging to understand the origin of a specific octadecanoid because different sources can
produce compounds with the same structure. While metabolites exclusive to plants and fungi are not described
in this review, the biological functions of common metabolites are discussed with no distinction related to their
source. The main human enzymatic metabolites deriving from LA are displayed in Figure 4, while Figure 5
shows the primary metabolites from OA and ALA.

Figure 3. Principal mechanisms for the main enzymatic pathways of LA metabolism in humans.

*(R)-hydroperoxides in humans are exclusively formed by 12(R)-LOX in the epidermis and can be further metabolized to 9(R)-HODE or to hydroxy–

epoxy metabolites by eLOX3 [48]. Mice have been shown to produce 9(S)-hydroperoxide from LA by 15-LOX-2, which is then metabolized to 9

(S)-HODE [40]. sEH, soluble epoxide hydrolase; DH, dehydrogenase.
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Figure 4. Primary enzymatic pathways for linoleic acid (LA)-derived octadecanoids in humans.

The yellow pathways indicate metabolites that are exclusively formed from symbiotic gut bacteria, as described by Kishino et al. [61].

Figure 5. Primary enzymatic pathways for oleic acid (OA)- and α-linolenic acid (ALA)-derived octadecanoids in humans.

The yellow pathways indicate metabolites which are exclusively formed from symbiotic gut bacteria, as described by Kishino et al. [61]. The orange

pathway is the ‘Jasmonate pathway’, a pathway present in plants that leads to the biosynthesis of the major class of phytohormones, the

jasmonates. This pathway was historically considered the only biologically relevant pathway of octadecanoids and was named the ‘Octadecanoid

pathway’ and is, therefore, shown in this figure for historical context.
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Enzymatic biosynthesis is not the only source of octadecanoids from 18-carbon PUFAs, because 1,4-cis penta-
dienes are prone to oxidation through free radicals or to photosensitized oxidation, producing a high diversity of
octadecanoid structures [63]. Linear octadecanoids produced by non-enzymatic oxidation may possess the same
chemical structure of enzymatic octadecanoids but are synthesized with undefined stereochemistry (racemic mix-
tures). In addition, cyclic structures such as endoperoxides can be formed exclusively from autoxidation, while
PUFAs possessing three or more unsaturations can produce two additional families of cyclic compounds: phyto-
prostanes (PhytoPs) and phytofurans (PhytoFs). The mechanisms of formation of non-enzymatic octadecanoids
are outside the scope of this review and have been broadly reviewed elsewhere [64].

Biological activity
Historically, study of the biological effects of octadecanoids has focused on a limited number of LA metabolites,
such as the CYP450 epoxides (EpOMEs) and diols (DiHOMEs), as well as the HODEs. In particular, the
potent toxic effects exerted by 9(10)-EpOME were first identified by Ozawa et al. [65], who detected high con-
centrations of this compound in lung lavages of rats exposed to hypoxia and demonstrated its capacity to
uncouple mitochondrial respiration, ultimately causing cell death and tissue damage, resulting in pulmonary
edema. Because 9(10)-EpOME is synthesized by leukocytes, it was named ‘leukotoxin’ (and its regioisomer
12(13)-EpOME ‘isoleukotoxin’). The toxic effects of leukotoxins were further explored and these compounds
were found to induce heart failure when injected intravenously in dogs [66], possess vasoconstrictor effects in
cat carotid arteries [67], and induce dysfunction in isolated rabbit renal cortical mitochondria [68]. Most
remarkably, intravenous injection of both epoxides in mice caused acute pulmonary edema with dispersed
bleeding spots, with a 100% mortality rate [69]. Further studies linked the toxic effect to the corresponding
diols: 9,10-DiHOME and 12,13-DiHOME (leukotoxin-diol and isoleukotoxin-diol, respectively) [70]. Diols are
produced from the epoxides by the sEH, which is ubiquitously expressed in human tissues and possess high
conversion efficiency [71]. It was demonstrated that the diols and not the epoxides were responsible for mito-
chondrial dysfunction, leading to cell death in rabbit renal proximal tubular cells [72] and for the pulmonary
edema causing acute respiratory distress syndrome (ARDS) in mice [73]. Additionally, mice administered with
a sEH inhibitor to block the conversion of epoxides to diols had a significantly decreased mortality rate [73].
Recent studies have highlighted a potential role of the DiHOMEs in the pathophysiology of severe COVID-19
[74,75]. The biological role of 12,13-DiHOME has expanded beyond its cytotoxic effects as demonstrated by
multiple recent papers that review different aspects of its biological activity [76–79]. In addition, our knowledge
on the impact of octadecanoids other than EpOMEs and DiHOMEs on human pathophysiology has been
amplified by the numerous studies discussed below.

Epidermal barrier formation
LA is the most abundant fatty acid in mammal skin [80]. Brash and colleagues have extensively investigated the
role of LA-derived octadecanoids in epidermal barrier formation and found that LA is almost exclusively esteri-
fied in epidermis-specific ceramides [81]. Two of the six human LOX enzymes, eLOX3 and 12(R)-LOX, are
highly expressed in the epidermis [39]. eLOX3 can metabolize 9(R)-HpODE to form hydroxy–epoxy metabo-
lites, while 12(R)-LOX can oxidize LA to the 13(R)-HpODE. Oxidation of esterified LA plays a fundamental
role for correct functioning of the skin. Esterified LA is oxidized to hydroxy-epoxides and the subsequent
hydrolysis to triols facilitates its cleavage from skin ceramides and enables the formation of the corneocyte lipid
envelope, fundamental to prevent transepidermal water loss [42]. There is also evidence that octadecanoids
derived from other LA regioisomers are involved in the formation of the epidermis (e.g. sebaleic acid, 5(Z),8
(Z)-octadecadienoic acid) [82]. In vitro experiments demonstrated that human sEH (EPHX2) as well as human
and murine EPHX3 hydrolyzed LA-derived hydroxy-epoxides to the corresponding triols. The resulting stereo-
chemistry of the triol formation matched that of the major triol isomers in human, murine, and porcine epider-
mis [42,83]. While microsomal epoxide hydrolase (mEH, EPHX1) was also tested, it was found to be inactive
[83]. Follow-up in vivo experiments demonstrated the ability of EPHX3 to hydrolyze 11(E)-13(R)-OH-trans-
9(R)(10(R))-EpOME, esterified in the epidermal ceramide in the outer layer of the murine epidermis, to the
corresponding 9(R),10(S),13(R)-TriHOME [84]. Taken together, these collective findings highlight the role that
esterified linoleates play in the formation of the mammalian epidermal water permeability barrier, while add-
itional studies suggest that they may be a source of bioactive lipids formation [85].
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Nociception
The involvement of LA octadecanoids in nociception was first proposed by Ramsden and colleagues when they
identified increased concentrations of hydroxy–epoxy and hydroxy-oxo octadecanoids in psoriatic skin lesions
and observed increased scratching behavior after injection of these compounds in rodents. In particular,
9(Z)-11-OH-12(13)-EpOME and 12(Z)-11-OH-9(10)-EpOME sensitized primary afferent dorsal root ganglion
(DRG) neurons in ex vivo calcitonin gene-related peptide (CGRP) release assays, and induced C-fiber-mediated
pain-related hypersensitivity in rats; because these compounds share a 3-hydroxy-(Z)-pentenyl-trans-epoxide
moiety, this was proposed as the pharmacophore mediating nociception [48]. Both these compounds were
found to stimulate trigeminal neurons by eliciting Ca2+ responses, suggesting involvement in chronic headaches
and craniofacial pain syndromes [86]. High levels of 9(Z)-11-OH-12(13)-EpOME and 11(E)-13-OH-9(10)-
EpOME were detected for the first time in animal tissues in the brain of chronic pain model rats [87]. The
former was capable of sensitizing nociceptors in the dorsal root ganglia and eliciting pain-related behavior in
vivo [87], and its plasma concentrations inversely correlated with pain reduction in a small clinical trial
manipulating LA and omega-3 PUFAs in the diet of people suffering from chronic daily headaches [48].
Among the other LA-derived octadecanoids, 9- and 13-HODEs and KODEs were found to be involved in

nociception via interaction with the capsaicin receptor TRPV1 (transient receptor potential cation channel sub-
family V member 1). These compounds were formed in rodent biopsies after exposure to noxious heat and
were released in large amounts following cell injuries [88]. Blocking the production or the action of these octa-
decanoids substantially decreased the heat sensitivity of TRPV1 in rats and mice and reduced nociception.
9-KODE and its precursor 9-HODE were found to be the most abundant oxylipins in human skin, confirming
the high activity of 12(R)-LOX [27], and systemic levels of both 9- and 13-HODE directly correlated with
increased pain scores in women suffering from chronic neck pain [89]. TRPV1 was also activated by
12,13-DiHOME resulting in thermal pain hypersensitivity [90]. A systematic investigation of the molecular
mechanisms behind nociception and inflammation integrating transcriptomics and lipidomics measurements
was published by Domenichiello et al. [27]. The results highlighted the unique position of octadecanoids in
pain modulation due to their high abundance in skin and their possibility to interact with receptors involved in
the pain circuit.

Tissue modulation and cell proliferation
The monohydroxyls produced by oxidation of LA, 9- and 13-HODEs, are PPAR-γ agonists and were found to
increase the uptake of 18-carbon fatty acids in monocyte cell lines. Additionally, 9-HODE alone increased the
uptake of 16-carbon fatty acids and induced apoptosis in the same cell lines [91]. Activation of PPAR-γ by the
HODEs induced monocyte maturation to macrophages [92] and resulted in antiproliferative and pro-apoptotic
effect in Caco2 cell lines [93]. Chiral characterization determined the opposite effect of the (S)- and
(R)-enantiomers in Caco2 cell lines, with only the (S)-enantiomer being responsible for the antiproliferative
effect. Conversely, the (R)-enantiomer activated the BLT-1 and BLT-2 receptors and induced cell proliferation
through COX activation. 13(S)-HODE was also found to downregulate and deactivate PPAR-δ, restoring apop-
tosis in colorectal cancer cells [94] and inhibiting cell growth in a time- and dose-dependent fashion in MCF-7
and MDA-MB231 breast cancer cell lines [95]. Moreover, 13(S)-HODE specifically blocked the pro-metastatic
effect of the eicosanoid 12(S)-HETE, which enhanced surface expression of integrin α11bβ3 in lung tumor
cells, both in low and high metastatic B16 cell lines [96]. Other than cell proliferation, 13-HODE is also the
major chemorepellent in blood vessels endothelium, to which it imparts flexibility and thromboresistance [97].
A comprehensive review describing the effects of the HODEs in the regulation of inflammation in metabolic
syndrome, cell adhesion, apoptosis, and mitogenesis in cancer has been published by Vangaveti et al. in 2016 [26].

Metabolic and hormone regulation
Octadecanoids have been shown to affect hormone modulation and lipid metabolism. At low concentration,
12,13-DiHOME acts as a lipokine by promoting insulin sensitivity and glucose tolerance and by stimulating
brown adipose tissue (BAT) activity [25]. Levels of 12,13-DiHOME were found to negatively correlate with
body-mass index and insulin resistance, and injections of 12,13-DiHOME activated BAT fuel uptake and
enhanced cold tolerance, which resulted in decreased levels of serum triglycerides [25]. Acute 12,13-DiHOME
treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake
[24]. The LA derivative 10(E)-9-oxo-12(13)-EpOME (commonly known as EKODE) is known to regulate
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aldosterone production in vitro, and can favor the onset of hypertension [98]. Lipid metabolism can be altered
by octadecanoids such as 13-HODE and ketones oxidized on C-9. It was shown that 13-HODE can interfere
with the assembly and composition of triacylglycerol-rich lipoproteins secreted by intestinal cells and decrease
the secretion of triacylglycerol in Caco-2 cells [99]. The ALA-derived ketone 9-KOTrE was found to promote
fatty acid uptake and oxidation via activation of PPAR-α and by inducing the mRNA expression of PPAR-α
target genes [31]. The same effect was caused by 10(E),12(E)-9-KODE, a LA-derived ketone found in tomato
fruits, which was also reported to inhibit cellular triglyceride accumulation in hepatocytes [100]. These effects
were confirmed in vivo on KK-Ay obese mice fed a high-fat diet, for which treatment with 10(E),12
(E)-9-KODE decreased the levels of plasma and hepatic triglycerides, suggesting a possibility to improve
obesity-induced dyslipidemia and hepatic steatosis [101].

Inflammation and immune modulation
Various octadecanoids can regulate inflammation and possess anti-inflammatory activity. The LA metabolite
13-KODE induces transcriptional repression of pro-inflammatory factors followed by amelioration of colitis in
animal models of inflammatory bowel disease (IBD), via the activation of the PPAR-γ receptor [102]. Activation
of this receptor by 13(S)-HpOTrE or 13(S)-HOTrE inactivates the NLRP3 inflammasome complex leading to the
downregulation of LPS-induced pro-inflammatory markers in LPS-challenged RAW 264.7 cells and mouse peri-
toneal macrophages. Additionally, the anti-inflammatory effects of these two metabolites were mediated by the
induction of apoptosis and inhibition of autophagy in the LPS-challenged macrophages [20]. The generation of
epoxy metabolites from LA during inflammation resolution constitutes an important control point limiting the
accumulation of pro-inflammatory Ly6chi monocytes [103]. The diol 9,16-DiHOTrE significantly decreased the
levels of prostaglandins synthesized by recombinant COX-1. Both the 9(R)/16(S)- and the 9(S)/16(S)-stereoisomers
exhibited an inhibitory effect on human recombinant COX-2, which is a major mode of action to reduce
inflammation. Additionally, the 9(R)/16(S)-isomer caused a decrease in pro-inflammatory LTB4 and 5
(S)-HETE formation from arachidonic acid, indicating the additional inhibition of the 5-LOX pathway [51].
The DiHOMEs have been suggested to function as key drivers of immune cell dysfunction in severe burn

injury through hyperinflammatory neutrophilic and impaired monocytic actions [104], further suggesting that
inhibition of the sEH might be a useful therapeutic target for treating burn patients. Lynch and co-workers
[21] found that levels of 12,13-DiHOME produced by gut bacteria in neonates correlated with the propensity
to develop atopic asthma. A follow-up study provided a mechanistic link showing that perturbation of the gut
microbiome resulted in the overexpression of bacterial epoxide hydrolase genes, which produced increased
levels of 12,13-DiHOME. This, in turn, impeded immune tolerance and promoted allergic inflammation by
altering the cell immune metabolism [19].

Microbiome-derived octadecanoids
The deep connection between host and symbiotic microflora is attracting increasing attention, showing import-
ant biological actions of microbial metabolites on the host health status. In particular, octadecanoids produced
by gut bacteria enzymatic oxidation on C-10 of LA and ALA have been shown to modulate a variety of meta-
bolic and hormonal processes via interaction with various PPARs, TRPV1, and GPCR40. The LA metabolites
12(Z)-10-HOME and 11(E)-10-HOME are both PPAR-α agonists [105]. The 12(Z)-isomer was recognized by
GPCR40 with higher affinity than LA, leading to amelioration of intestinal inflammation in dextran sulfate
sodium (DSS)-induced colitis in mice [32] and TNFR2, through which it was found to regulate intracellular
levels of glutathione and trigger antioxidant/detoxifying effects, which in turn are responsible for its immuno-
modulatory ability [106].
The production of 12(Z)-10-HOME from gut bacteria diverts excess of LA from the arachidonic acid

cascade reducing the production of pro-inflammatory mediators [22]. Acute administration of 12
(Z)-10-HOME promoted intestinal peristalsis (via activation of the EP3 receptor in the gut) and increased the
secretion of GLP-1, which caused appetite suppression, improved insulin resistance and glucose homeostasis,
and conferred protection against fat-induced obesity in mice [22].
Ketones produced from the hydroxides via conjugated linoleic acid dehydrogenase (CLA-DH) were also

found to interact with the same receptor systems. Both 12(Z)-10-KOME and 11(E)-10-KOME are PPAR-α ago-
nists, whereas only the 12(Z)- isomer shows significant PPAR-γ activation, resulting in increased insulin-
stimulated glucose uptake and induction of adipocytes differentiation in 3T3-L1 cells [105]. 12(Z)-10-KOME
was also found to be a potent activator of TRPV1 and enhanced noradrenalin turnover in adipose tissues,
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resulting in the improvement in the conditions of glucose intolerance, insulin resistance, and increased adipos-
ity in obese and diabetic-model mice [23]. The 11(E) isomer, on the other hand, stimulated the secretion of
gut hormones such as cholecystokinin through interaction with GPCR40 [107]. The same effect was observed
upon administration of the ALA metabolite 9(Z),15(Z)-13-KODE, which in addition lowered the gastric empty-
ing rate in rats upon oral administration [107] and, together with 9(Z),15(Z)-13-HODE, induced differentiation
of anti-inflammatory M2 macrophages [108].

Perspectives
• 18-carbon fatty acids are the most abundant long-chain PUFAs consumed in the Western

diet. These compounds can be converted to downstream metabolic products collectively
called octadecanoids, which are increasing being established as functional lipid mediators.
Given the high consumption of 18-carbon fatty acids, the octadecanoid lipid mediators have a
commensurate elevated concentration relative to the traditional eicosanoid and docosanoid
lipid mediators, increasing the potential for these compounds to exert physiological effects.

• Octadecanoids have been demonstrated to exert functional roles in multiple biological func-
tions including epidermal barrier formation, inflammation and immune modulation, metabolic
processes, cell proliferation and tissue structure modulation, as well as pain transmission and
nociception. However, there remains a lack of knowledge regarding the biological activity of
known octadecanoids as well as a need for the discovery and characterization of new
species, particularly in relation to the microbiome.

• The majority of octadecanoid studies to date lack mechanistic insight into the functional role
of these lipid mediators. Future directions in this nascent field should strive to fully character-
ize the diverse structures that can be formed from both enzymatic and non-enzymatic pro-
cesses (including stereochemistry), determine the production of these putative mediators in
known systems including the triggers of biosynthesis and identification of factors that change
the setting and fidelity of their formation. The investigation of specific octadecanoid receptors
should also be a priority. Increased understanding of the biological activity of octadecanoids
represents an opportunity to understand the relationship between alterations in dietary fat
composition and the physiology of multiple disease processes.
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