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Motor neuron diseases (MNDs) include a broad group of diseases in which neurodegen-
eration mainly affects upper and/or lower motor neurons (MNs). Although the involvement
of specific MNs, symptoms, age of onset, and progression differ in MNDs, the main
pathogenic mechanism common to most MNDs is represented by proteostasis alteration
and proteotoxicity. This pathomechanism may be directly related to mutations in genes
encoding proteins involved in the protein quality control system, particularly the autop-
hagy-lysosomal pathway (ALP). Alternatively, proteostasis alteration can be caused by
aberrant proteins that tend to misfold and to aggregate, two related processes that, over
time, cannot be properly handled by the ALP. Here, we summarize the main ALP features,
focusing on different routes utilized to deliver substrates to the lysosome and how the
various ALP pathways intersect with the intracellular trafficking of membranes and vesi-
cles. Next, we provide an overview of the mutated genes that have been found asso-
ciated with MNDs, how these gene products are involved in different steps of ALP and
related processes. Finally, we discuss how autophagy can be considered a valid thera-
peutic target for MNDs treatment focusing on traditional autophagy modulators and on
emerging approaches to overcome their limitations.

Introduction
Motor neuron diseases (MNDs) are a large class of neurodegenerative diseases (NDs) primarily affect-
ing neurons that control the skeletal muscle fibers. These neurons comprise upper motor neurons
(MNs) localized in the motor cortex and lower MNs localized in the bulbar regions or in the anterior
horns of the spinal cord. Other cell types surrounding (e.g. glial and microglial cells) or connecting to
(e.g. sensory neurons, interneurons, muscle cells, etc.) MNs may contribute to disease onset and pro-
gression, and ultimately to paralysis and death of the patients. These neural systems are governed by a
complex architecture, thus various MN types are differentially and selectively involved in these disor-
ders, leading to multifaceted clinical manifestations that considerably vary among affected individuals.
To simplify, MNDs can be roughly classified into three major categories that reflect both the clinical

signs and the type of MNs affected: (i) with lower MNs involvement (e.g. spinal muscular atrophy
(SMA), spinobulbar muscular atrophy (SBMA or Kennedy’s disease), progressive muscular atrophy
(PMA), pseudobulbar palsy (in the bulbar region), monomelic amyotrophy (MMA), lethal congenital
contracture syndrome (LCCS), etc.), (ii) with upper MNs involvement (e.g. primary lateral sclerosis
(PLS) and hereditary spastic paraplegias (HSP), etc.), and (iii) with combined upper and lower MNs
involvement (e.g. amyotrophic lateral sclerosis (ALS), etc.) [1–3]. Overall, motor manifestations
depend on which MNs are affected: lower MN loss results in muscle weakness, and upper MN loss in
spasticity; mixed clinical signs associate initially to upper and lower MN loss, but when the disease
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progresses weakness and flaccid paralysis prevail over spasticity. Noteworthily, this basic classification does not
fully reflect the existence of mixed forms, as, for example, ALS with frontotemporal dementia (FTD) [4].
No cure is available for most of these MNDs. Only for specific forms of SMA some highly innovative genetic

approaches have recently proved to be therapeutically efficient [5–7].
The molecular bases of these MNDs may considerably differ and, while specific inherited (familial) forms

are characterized by mutations in genes encoding proteins involved in a variety of intracellular and extracellular
biological functions, some MNDs occur in a sporadic manner, making it very difficult to determine the causes
of MN loss. Nevertheless, sporadic forms often display a dysregulation of the same proteins that have been
identified mutated in familial forms of MNDs (see the case of sporadic and familial ALS) [8]. Intriguingly,
many of these proteins and their mutated counterparts act in the neuronal response to proteotoxic stresses,
which includes the protein quality control (PQC) system and particularly the autophagy-lysosomal pathway
(ALP). ALP is essential to degrade damaged organelles or toxic protein aggregates and inclusions capable to
alter cellular homeostasis causing MN death. This review will thus focus on the role of ALP in MNDs.

The autophagy-lysosomal pathway
The term ‘autophagy’ refers to various cellular processes involved in proteins or organelles clearance via the
lysosomal system. Autophagy eliminates unused, excessive, and/or defective macromolecules (either endogenous
or exogenous) and recycles their components for other biosynthetic pathways (Figure 1). Autophagy takes place
in the cell cytoplasm, and it is an essential arm of the PQC and RNA quality control system, which works
together with the proteasome in a finely tuned equilibrium. The fate of a given substrate is regulated by a pleth-
ora of chaperone proteins, that define how substrates will be cleared from cells. Autophagy dysregulations cause
several acute and chronic human diseases and promote the aging process; these findings have stimulated the
search for autophagy modulators as potential therapeutic tools to efficiently counteract them [9–11].
Autophagy is a complex system, in which the delivery of cargoes to lysosomes for degradation follows

different routes named (i) macroautophagy (usually referred to as autophagy), (ii) microautophagy, and
(iii) chaperone-mediated autophagy (CMA).
Macroautophagy implies that cargoes are sequestered by ‘omegasomes’ released by the endoplasmic reticulum

(ER) or other membranous compartments (e.g. late endosomes, Golgi apparatus, or plasma membrane).
Omegasomes release double-membrane structures to enclose substrates generating the autophagosomes. This
process is tightly regulated and controlled by the autophagy-related proteins (named ATGs) which orchestrate
autophagosome assembly, trafficking, and fusion to lysosomes [10,12]. The type of cargo determines whether
macroautophagy occurs ‘in bulk’ (i.e. cytoplasm portions engulfed into autophagosomes), or ‘selectively’, thanks
to specific autophagy receptors (e.g. sequestosome 1 (SQSTM1/p62), optineurin (OPTN), etc.) that bridge cargoes
to the autophagosome membranes. This is enabled by the presence of an LC3-interacting region (LIR) in most of
the autophagy receptors. The LIR allows them to interact with members of the LC3/GABA Type A Receptor-
Associated Protein (GABARAP) family (e.g. the microtubule-associated protein light chain 3 (MAP-LC3 or
LC3)) anchored in their lipidated form (LC3-II) on the autophagosomes surface [13]. Through this mechanism,
damaged organelles or other substrates are selectively removed from the cytoplasm [14]. For instance, terms such
as ERphagy, mitophagy, lysophagy, ribophagy, pexophagy, RN/DNautophagy, xenophagy, aggrephagy describe
the selective removal of damaged structures of ER, mitochondria, lysosomes, ribosomes, peroxisomes, nucleic
acids, pathogens, and protein aggregates, respectively (Figure 1). Once substrates have been engulfed into autopha-
gosomes, macroautophagy ends with the fusion of autophagosomes with lysosomes for cargo degradation.
In diseases characterized by the presence of misfolded proteins prone to aggregate (including MNDs), aggre-

phagy may utilize a specific form of cargo delivery to the microtubule organization center (MTOC), where
aggresomes are assembled [15–19]. This route, known as chaperone-assisted selective autophagy (CASA)
[20,21], is based on misfolded protein recognition by a heteromeric complex of the small heat shock protein B8
(HSPB8) and its obligatory partner Bcl-2-associated athanogene 3 (BAG3) [22,23]. Once formed, HSPB8/
BAG3 associate to HSPAs/HSP70s bound to the carboxyl terminus of HSC70-interacting protein (CHIP or
STUB1), a U-box-containing E3 ubiquitin-protein ligase that tags misfolded proteins with a polyubiquitin
chain for autophagy receptor recognition (SQSTM1/p62 for CASA). This protein complex, named CASA
complex, is then transported along microtubules to the MTOC by the dynein machinery bound to BAG3
[22,23]. Next, the autophagy receptors allow the LC3-II-mediated insertion into autophagosomes. The rele-
vance of the CASA in cell homeostasis is underlined by the fact that, when mutated, most of its members
cause neuronal or muscular disorders (see Figure 2 for details).
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Regarding mammalian microautophagy, cargoes are specifically engulfed into lysosomes via the intervention
of late endosomes. Protein recognition can be achieved either ‘in bulk’ or (like CMA, see below) selectively
thanks to a KFERQ-like motif in the target protein which is recognized by the constitutive form of HSPAs/
HSP70s, the heat shock cognate 70 (HSPA8/HSC70) [24]. In microautophagy, HSPAs/HSP70s activities are
mediated by an invagination of the late endosome membrane with the involvement of the endosomal sorting
complex required for transport (ESCRT) machinery. Entrapped proteins and organelles can be then directly
processed in late endosomes or after their fusion with lysosomes [9,25–27]. HSPA8/HSC70 plays a pivotal role
also in CMA. In CMA, the HSPA8/HSC70-bound substrate is not subjected to endosomal engulfment. Instead,
the HSPA8/HSC70 recognizes and unfolds the cargo that is directly routed to lysosomes where it is released to
the CMA receptor LAMP2A, thus escaping the late endosomal engulfment [28]. In CMA, only the proteins

Figure 1. Overview of the autophagy pathway.

Macroautophagy is finely regulated by ATGs and other proteins forming multimeric complexes responsible for (i) initiation

(ULK1 complex, activated by various signals), (ii) phagophore formation (Class III PI3K complex), and (iii) elongation (ATG8/12

conjugation systems). In macroautophagy, cargoes are engulfed «in bulk» or selectively (green box), with the involvement of

autophagic receptors (e.g. SQSTM1/p62, OPTN), into membranous structures (phagophore) which close forming a double

membrane vesicle decorated with LC3-lipidated proteins (autophagosome), which fuses with the lysosome. In microautophagy,

a direct invagination of the lysosomal membrane («in bulk») sequesters the substrates to be degraded or, alternatively,

substrates carrying a KFERQ-like motif are recognized and directed to endosomes by the HSPA8/HSC70; in CMA, substrates

carrying a KFERQ-like motif are bound by HSPA8/HSC70 and internalized into the lysosome in a LAMP2A-dependent manner.

Autophagy pathway cross-talks with the endosomal system: substrates can be internalized into endosomes. Endosomes can

be directly targeted to lysosomes or maturate in multivesicular bodies (MVBs) that fuse with autophagosomes forming

amphisomes, which are addressed to lysosomal degradation. Substrates can be also cleared from cells through exocytosis by

MVBs fusion with cell membrane or other vesicles budding. This figure was created using Servier Medical Art templates,

licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com [23].
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possessing the KFERQ-like motif can be cleared [29], even if this motif is relatively frequent in mammalian
proteins and there is the intriguing possibility to activate it via post-translational modifications (phosphoryl-
ation, acetylation) acting as an off/on switch to regulate protein degradation [24]. When the cargo is released
from HSPA8/HSC70 it is associated to LAMP2A, which oligomerizes into the lysosomal membrane.
Oligomerization promotes the translocation of the cargo to the lumen, where another HSPA8/HSC70 extracts
the cargo allowing its degradation (Figure 1).

Mutant genes encoding autophagy-related proteins are
linked to MNDs
As mentioned above, in the past two decades, it emerged that many mutant genes causative of specific MND
forms encode proteins differentially involved in the regulatory steps of autophagy.
Indeed, by merely looking at the many different HSP forms, several mutated genes, called Spastic ParapleGia

(SPG) genes, encode proteins that are key regulators of the endolysosomal system and autophagy. An autosomal
dominant form of HSP is caused by a mutation of the SPG42 gene encoding a protein involved in ER mem-
brane transport, bone morphogenetic protein (BMP) signaling and autophagy [30–32]; other autosomal reces-
sive forms are caused by mutant genes encoding proteins involved in autophagy as well as in lysosome shaping
(e.g. SPG11, encoding spatacsin), in endosomal trafficking (e.g. SPG15, encoding spastizin), in vesicle formation
and trafficking (e.g. SPG47, SPG50, SPG51, SPG52, SPG53, encoding AP4B1, AP4M1, AP4E1, AP4S1, VPS37A,
respectively), in Golgi apparatus-multivesicular bodies (MVB) dynamics (e.g. SPG48, encoding AP5Z1), and
lysosomal targeting to autophagosomes (e.g. SPG49, encoding TECPR2), or in membrane trafficking and mito-
chondrial function (e.g. SPG78, encoding ATP13A2) [30–34] (Figure 3 and Table 1). Mutations of these genes

Figure 2. CASA involvement in MNDs and other neuromuscular conditions.

The list reports factors of the CASA pathway of which mutations have been found in diseases affecting the neuromuscular

system. In particular, BAG3 and HSPB8 mutations are described in neuropathies (CMT2 and dHMN) and myopathies. BAG3

mutations are also causative of dilated cardiomyopathy (DCM). CHIP/STUB1 mutations are associated with different forms of

SCA. Other factors that participate in CASA pathway are SQSTM1/p62, mutated in ALS-FTD and MSP, the dynein machinery

components DYNC1H1 and DCTN1, mutated in CMT2 and SMALED or dHMN, respectively. CMT2 = Charcot–Marie–Tooth

type 2; dHMN= distal hereditary motor neuropathy; DCM= dilated cardiomyopathy; SCA = spinocerebellar ataxia; (SCA)R =

recessive; (SCA)-DI = Digenic; MSP =multisystem proteinopathy; SMALED = spinal muscular atrophy with lower extremity

predominance. This figure was created using Servier Medical Art templates, licensed under a Creative Common Attribution 3.0

Unported License; https://smart.servier.com [23].

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).1492

Biochemical Society Transactions (2022) 50 1489–1503
https://doi.org/10.1042/BST20220778

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/50/5/1489/938932/bst-2022-0778c.pdf by guest on 19 April 2024

https://smart.servier.com
https://smart.servier.com
https://creativecommons.org/licenses/by/4.0/


result through different mechanisms in MNs death and involve other neuronal populations, giving rise to the
complex and mixed clinical manifestations which coexist with motor dysfunctions.
Even more complex is the autophagy involvement in ALS [4,11,84]. As for HSP, several familial ALS forms

are caused by mutations in genes encoding proteins regulating the endolysosomal and autophagic pathways (as
extensively reviewed in [85]). Examples are the C9ORF72 (encoding the C9orf72-SMCR8 complex subunit,
guanine nucleotide exchange factor C9orf72, recently involved in autophagy), the DCTN1 and KIF5A (encod-
ing, respectively, dynactin subunit 1 (a component of dynein motor complex) and kinesin family member 5A,
involved in the autophago-lysosome fusion process and, for dynein/dynactin, in the routing of the CASA
complex to the MTOC), VCP (encoding the valosin containing protein, a hexameric complex involved in mis-
folded protein extraction for their degradation via different pathways, including autophagy), SQSTM1/p62 and
OPTN (encoding the Sequestosome 1 and the optineurin, two autophagy receptors), TBK1 (encoding the
TANK binding kinase 1, involved in the innate immune response, inflammation, cell proliferation responses,
and autophagy), FIG4 (encoding the factor-induced gene 4, a magnesium-dependent phosphatase converting
phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) into phosphatidylinositol-3-phosphate (PI(3)P) on endoso-
mal membranes, a process relevant for endosomal transport and autophagy), and others.
Moreover, several mutant genes encode proteins not directly involved in autophagy, but related to mechan-

isms that facilitate the process (e.g. genes encoding proteins involved in vesicle trafficking (and apoptosis,

Figure 3. Schematic representation of the main genes involved in autophagy and endolysosome pathway associated to

MNDs.

In MNDs, various mutations have been identified in genes encoding for proteins involved in different steps of autophagy and

endolysosome pathways which result impaired and dysfunctional. In parallel, mutant MNDs-related genes encode for proteins

prone to misfold and aggregate which are substrates of autophagy. ALS = amyotrophic lateral sclerosis; HSP = hereditary

spastic paraplegia; PLS = primary lateral sclerosis; SBMA= spinobulbar muscular atrophy. This figure was created using Servier

Medical Art templates, licensed under a Creative Common Attribution 3.0 Unported License; https://smart.servier.com.
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exocytosis, and cytokinesis), like ANXA11, encoding annexin A11; in endocytosis (and RNA metabolism), like
ATXN2, encoding ataxin 2; in sorting of endosomal cargo proteins, like CHMP2B, encoding the charged MVB
protein 2B, a component of the ESCRT complex III; in vesicle trafficking from the ER-membrane, like VAPB,
encoding VAMP associated protein B/C) (Figure 3). Also, the molecular re-routing system from autophagy to
proteasome and vice versa may indirectly cause autophagy alterations. In fact, this system maintains the fine-
tuned equilibrium between these two degradative pathways. The best example is the routing system based on
the activity of HSPAs/HSP70s-CHIP, which is differentially regulated by their selective association to HSPB8/
BAG3 (CASA for autophagic degradation) or to BAG1 (for proteasome degradation) [22]. Autophagy could be
required as an alternative mechanism, in case of mutations occurring in UBQLN2 or CCNF (encoding, respect-
ively, Ubiquilin 2 and cyclin F, the first physically associated with both proteasome and ubiquitin ligases and
involved in protein degradation via proteasome, the second catalyzing ubiquitin transfer to substrates for pro-
teasomal degradation), even if it is still unclear whether the autophagic response may compensate the altered
proteasome pathway.
The impact of some of the mutations/variants reported above on ALS onset and progression is debated. A

recent database (ALSoD (https://alsod.ac.uk/)) has tried to correlate how the variants are linked to ALS, even
when evidence is weak.
It should be underlined that mutations in some of the genes associated to HSP and ALS may also be respon-

sible for the appearance of PLS (e.g. SPG7, TBK1, ALS2, ERLIN2, FIG4) [86]. Similarly, a FTD phenotype may
be present at different degrees in ALS cases (even as pure FTD with some ALS-related mutant genes).
Therefore, it is difficult to draw clear correlations between genotype and phenotype in these diseases.

Table 1. Genes cited in this review involved in ALP

In blue, genes encoding proteins whose functions have been related to ALP. In yellow, genes that, when mutated, encodes protein products
prone to misfold and aggregate, impairing proteostasis. Genes with both features are in yellow with blue lines.
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Even in the case of SMA, the causative survival MN (SMN1) protein (a protein implicated in spliceosome
assembly and ribonucleoproteins biogenesis, mRNA trafficking, local translation, and cytoskeletal dynamics)
has been found involved in endocytosis and autophagy (see [87] for review), although the mechanism by
which SMN controls or is regulated by autophagy is still poorly understood [88–90].

Mutant genes encoding proteins prone to misfold and
aggregate cause MNDs
While some mutated genes causative of MNDs directly modulate ALP, many others indirectly impact on autop-
hagy as a consequence of the aberrant biochemical properties acquired by the mutant protein. This occurs
when a mutation modifies the native protein (i) altering its capability to properly fold, (ii) enhancing its hydro-
phobicity, (iii) affecting highly disordered domains, or (iv) altering its interaction with partners, etc. These
mechanisms are not mutually exclusive and often increase the propensity of the mutant proteins to clamp
together, forming aggregate structures of diverse nature: liquid–liquid droplets or fluid condensates, solid-like
aggregates or densely packed insoluble protein inclusions, etc., based on their mechanism of formation and/or
their stage of maturation. As a function of their biochemical state, aggregates can be dissolved or further pro-
cessed to be cleared from cells via autophagy. However, aggregated proteins may impair the autophagic flux,
causing severe consequences to the PQC system, with the degradative capability of affected neurons (or sur-
rounding cells affected in MNDs) being overwhelmed. Indeed, this is the case of SBMA, caused by the tran-
scription factor androgen receptor (AR) carrying an elongated polyglutamine tract (ARpolyQ) in its
N-terminus. Soon after its translation, the polyQ is masked by specific chaperones (HSPAs/HSP70s, HSP90,
etc.), that are released upon AR-binding with its natural androgenic ligands. These molecules activate the AR,
allowing conformational changes that unmask the polyQ, causing ARpolyQ aggregation and impairment of the
autophagic process [91–98]. Despite a deep investigation, it is still not totally clear whether aggregates cause
autophagic flux blockage, or if a defective autophagy results in poor protein clearance and thus excessive

Figure 4. Toxic cycle nourishing proteostasis imbalance.

An increased load in misfolded substrates may result in protein aggregates formation, which, in turn, hampers the autophagic

flux. Impaired autophagy is not able to clear cells from misfolded substrates, which accumulate increasing the burden of

misfolded and aggregating substrates. Proteasome saturation feeds this toxic cycle, worsening proteostasis imbalance.
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protein aggregation. Likely, the two processes equally contribute to generate a toxic cycle in which defective
autophagy allows protein accumulation, that in turn, perturbs the autophagic pathway, potentiating the deleteri-
ous effects of ARpolyQ in MNs (Figure 4). This toxic cycle could also involve the proteasome system, which
has a low degradative capacity and only processes monomeric unfolded proteins. Thus, when the proteasome is
saturated by an excessive amount of substrates to be degraded, these accumulate worsening the autophagic flux
blockage previously mentioned [99–107]. Similar processes take place also in the case of various mutant pro-
teins causative of familial ALS or HSP. In fact, like the ARpolyQ in SBMA, most of these mutated proteins
tend to misfold and aggregate (e.g.: Superoxide Dismutase 1 (SOD1), TAR DNA-Binding Protein 43 (TDP-43,
and its fragment of 35 and 25 kDa), fused in sarcoma (FUS), VCP, the dipeptide repeats (DPRs) products of
the C9ORF72 mRNA, etc.) [100,108–129], possibly impairing the degradative systems including autophagy.
Notably, the exogenous expression or a pharmacological transcriptional induction of HSPB8 [22,116,117,130],
both robustly enhance mutant misfolded and aggregated protein clearance. Since HSPB8 is not an autophagy
inducer, its enhancement facilitates the delivery of misfolded proteins along microtubules for their autophagic
clearance [104,131–134], improving or restoring a normal autophagic flux.

Autophagy modulation as therapeutic tool in MNDs
Based on what reported above, autophagy activation may represent a valuable therapeutic approach for MNDs,
but this approach has to be carefully evaluated considering the specific alteration present in each clinical form
studied.
For example, in case of insufficient autophagy (e.g. lack of crucial factors linked to haploinsufficiency in

MNDs associated with loss-of-function mutations; recessive forms involving proteins which can be replaced by
the activity of other factors, etc.), it might be useful to stimulate the remaining functional wild type allele, or
‘redundant’ factors to restore autophagy. Unfortunately, autophagy and its regulation may considerably differ in
the various cell types affected in MNDs (neurons, MNs, glial cells, microglia, muscle cells) making it difficult
to identify the proper therapeutic agent for each MND form [11].
In general, drugs stimulating autophagy are relatively poorly specific. This is the case of the mammalian

target of rapamycin (mTOR) inhibitor rapamycin, tested in MND animal models [135] and under investigation
in ND patients [136,137], that acts not only on autophagy, but on a plethora of other intracellular pathways.
Lithium has also been tested in some forms of MNDs, even if its activity as an autophagy inducer is rather
controversial [138–141].
Other autophagy inducers, like trehalose and the more stable derivatives melibiose and lactulose, appear to be

more promising, since their molecular mechanism of action is more selective and impacts directly on the autophagy
master regulator transcription factor EB (TFEB) [104,142–146]. Trehalose has already been successfully tested in
several animal models of NDs [147–159]. No double-blind clinical trial has been started yet, even if a single-arm,
open-label pilot study has been recently reported on Niemann–Pick disease types A and B patients to assess its
potential efficacy after intravenous delivery for 3 months. Despite the size of the study was small, a positive (not
statistically relevant) trend was reported [160], suggesting that larger studies are needed to verify trehalose efficacy.
In the case of some MND forms in which autophagy is already enhanced in response to the overload of

aberrant aggregation-prone proteins, generic autophagy activators may not be effective treatments. Instead, the
pharmacological targeting of factors specifically acting on misfolded protein recognition and delivery to autop-
hagy will represent a valid therapeutic strategy. The drug colchicine has these properties since it has been iden-
tified as a potent activator of the human HSPB8 promoter in MNs. Its capability to enhance HSPB8 expression
was correlated with an increased CASA-mediated removal of ALS-associated proteins (TDP-43 and its disease
associated fragments) in ALS cell and fly models [161]. A double-blind clinical trial with colchicine is presently
ongoing on a group of ALS patients [133].

Conclusions
In conclusion, autophagy is an essential cellular process that maintains proteostasis in neurons and other cell
types typically affected in MNDs. Its role in MNDs is extremely complex as both its dysregulation and its insuf-
ficient or excessive activity play multiple roles in the appearance and/or progression of different forms of
MNDs and other NDs. Moreover, it is still unclear why this relatively conserved mechanism among the various
cell types of the human body associates to so many different pathological conditions. Since these diseases are
characterized by the selective vulnerability of different neuronal populations, other modifier factors might dif-
ferentially contribute to exacerbate or attenuate, respectively, the deleterious or protective activities of
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autophagy in each neuronal type. Therefore, the identification of a proper target to be tackled by drugs capable
of modulating the autophagic pathways is still challenging. However, it is emerging that approaches aimed to
facilitate an already activated autophagy (e.g. those acting on the selective delivery of misfolded proteins to the
autophago-lysosomes for their clearance) will provide more tailored treatments to counteract the neurotoxicity
of aggregation-prone proteins in a wide variety of MNDs linked to defective response to proteotoxic stimuli.

Perspectives
• MNDs comprise several untreatable neurodegenerative diseases characterized by the loss of

neurons controlling voluntary movements. Several MND forms are associated to alteration of
the main degradative systems, particularly the ALP.

• Several genes found causative of MNDs are involved in the regulation of the various forms of
autophagy. Other genes code proteins that perturb proteostasis in neurons indirectly altering
autophagy.

• Different compounds have been developed to stimulate and/or facilitate the ALP, some have
already been successfully tested in animal models of MNDs and may be utilized soon for
advanced clinical trials in MND patients.
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