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Type III CRISPR–Cas systems make use of a multi-subunit effector complex to target
foreign (m)RNA transcripts complementary to the guide/CRISPR RNA (crRNA). Base-
pairing of the target RNA with specialized regions in the crRNA not only triggers target
RNA cleavage, but also activates the characteristic Cas10 subunit and sets in motion a
variety of catalytic activities that starts with the production of cyclic oligoadenylate (cOA)
second messenger molecules. These messenger molecules can activate an extensive
arsenal of ancillary effector proteins carrying the appropriate sensory domain. Notably,
the CARF and SAVED effector proteins have been responsible for renewed interest in
type III CRISPR–Cas due to the extraordinary diversity of defenses against invading
genetic elements. Whereas only a handful of CARF and SAVED proteins have been
studied so far, many of them seem to provoke abortive infection, aimed to kill the host
and provide population-wide immunity. A defining feature of these effector proteins is the
variety of in silico-predicted catalytic domains they are fused to. In this mini-review, we
discuss all currently characterized type III-associated CARF and SAVED effector proteins,
highlight a few examples of predicted CARF and SAVED proteins with interesting pre-
dicted catalytic activities, and speculate how they could contribute to type III immunity.

Introduction
CRISPR–Cas is an adaptive immune system in prokaryotes that provides sequence-specific immunity
against mobile genetic elements (MGEs), such as phages, transposons and (conjugative) plasmids,
although other non-immune functions have been identified as well [1,2]. Well over a decade of
research has highlighted the immense diversity of these systems, as reflected by their classification that
currently distinguishes two main classes, six types, and many different subtypes [3]. Nevertheless, all
CRISPR–Cas systems make use of an RNA-guided protein (complex) that binds and degrades comple-
mentary MGE-derived sequences. However, type III CRISPR–Cas systems seem to be equipped with
an additional layer of defense that involves the production of signaling molecules and effector proteins
that respond to them.
A typical type III system consists of several cas genes and a CRISPR array containing MGE-derived

spacer sequences separated by repeat sequences (Figure 1A). Expression of the CRISPR array results
in pre-crRNAs (pre-CRISPR RNAs) that are processed by the Cas6 protein into crRNAs [4]. These
are typically further processed at their 30 ends, resulting in mature crRNAs that start with an 8 nt
repeat-derived handle at their 50 ends and with a variable 30 spacer-derived end [5]. Expression of the
type III cas genes forms a complex with these crRNAs, resulting in a heterogenous population of type
III ribonucleoprotein (RNP) complexes (Figure 1A).
Type III complexes are thought to operate in the context of a transcription bubble, where they bind

MGE-derived transcripts complementary to the bound crRNA (Figure 1B) [6,7]. Binding is initiated
at a 30 exposed region of the crRNA called the seed sequence [8]. The variable 30 end of the crRNA
guarantees flexibility in targeting mutated RNA sequences, as the seed will be in a different location in
differently sized type III complexes (Figure 1A). A seed-compliant target RNA will be bound and
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cleaved by the Cas7 subunits of the type III complex, cleaving it at 6-nt intervals [9–12]. Further base-pairing
of the target RNA with the 50 end, spacer-derived region on the crRNA will result in activation of the large
Cas10 subunit of the complex; a region we designated as the CAR (Cas10-activating region). However, activa-
tion of Cas10 is prevented when binding self-RNAs (i.e. antisense RNA transcripts form the CRISPR array)
(Figure 1C). This autoimmune protection is governed by sensing base-pairing interactions between the 50

handle and the corresponding ribonucleotides on the target RNA. Cas10 typically contains an HD domain,
capable of cleaving ssDNA substrates (potentially cleaving the exposed ssDNA regions in the transcription
bubble) and a Palm domain. The Palm domain acts as a cyclase that generates cyclic oligoadenylate (cOAx,
where x stands for the number of adenosine residues in the ring-like structure) signaling molecules from ATP
[13,14]. The number of adenosine residues can vary between different type III systems, but typically are in the
range of cOA2–cOA6. Subsequently, cOAs bind and allosterically activate proteins containing the appropriate
sensory domains: CARF (CRISPR-associated Rossmann fold) or SAVED (second messenger oligonucleotide or
dinucleotide synthetase-associated and fused to various effector domains). These sensory domains are often
fused to a wide range of (predicted) catalytic domains. Over the last years, a handful of these auxiliary type III
effectors have been characterized. Here, we will provide a short summary of our current understanding of these
proteins (Table 1). Furthermore, we will highlight a couple of interesting examples of predicted, (non-nuclease)
auxiliary type III effectors and speculate how they might contribute to type III immunity.

CARF nucleases
The first cOA-activatable proteins to be described were CARF nucleases, in particular Csm6 and Csx1, because
they are frequently encoded in type III CRISPR–Cas operons [15] (Figure 2A). Csm6 and Csx1 were shown to

Figure 1. Mechanism of type III CRISPR-Cas immunity.

(A) Overview of type III effector complex formation. Expression of the cas genes and processing of the CRISPR array. Repeats

and spacers are indicated by blue diamonds and gray rectangles, respectively. Following endonucleolytic cleavages of Cas6, a

variable 30 end processing step of the crRNAs leads to a heterogeneous complex size population. (B) Biological context of type

III CRISPR–Cas systems. A transcription bubble is formed when MGE-derived dsDNA is transcribed by an RNA polymerase

into (m)RNA, which is subsequently targeted by type III CRISPR–Cas. (C) Target RNA requirements for the various activities of

type III. Note that RNA cleavage only relies on complementarity in the seed region, whereas ssDNase and cyclase (cOA

production) activity requires additional strict base-pairing in the CAR and no base-pairing interactions with the 50 handle.
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function as RNases in type III interference, despite their lack of physical associations with type III complexes
[10,16–20]. Investigations into how Csm6 and Csx1 are activated upon target recognition by type III complexes
led to the discovery of the cOA signaling system and the function of CARF domains [13,14]. Since then, new
CARF nucleases have been characterized, showing different nuclease activities aiding in defense by promiscu-
ously degrading both self and non-self nucleic acids. Here, we will summarize the characterized CARF
nucleases, their catalytic activities, and their phenotypic outcomes.

Csm6
Among the first CARF proteins to be described was Csm6, in part due to its high prevalence in type III-A
CRISPR–Cas operons [15]. These proteins have an N-terminal CARF domain and a C-terminal HEPN (higher
eukaryotes and prokaryotes nucleotide-binding) domain, interspaced with an α-helical region (6H) [17]. Csm6
forms homodimers in solution to form a cOA binding pocket and a composite ribonuclease active site, in a
dynamic conformational equilibrium between active and inactive forms, conferring low levels of non-specific
RNase activity [16,17,21]. Upon cOA binding, Csm6 homodimers stabilize to the activated conformation formed
by the histidine residues of the catalytic HEPN domain, leading to a highly-active, non-specific RNAse that cleaves
single-stranded RNAs (ssRNAs) after purines (Figure 2A) [13,17,22]. Besides ssRNase activity, some Csm6 homo-
logs have ring nuclease activity (conferred by either the CARF or HEPN domain) that cleaves bound cOAs,
thereby autoregulating their activity [21,23]. In vivo, the contribution of Csm6 to type III immunity becomes
important in situations with sub-optimal type III targeting, such as with late-expressed viral genes, mutated targets,
or infrequently transcribed plasmid genes. Here, Csm6-mediated RNA degradation becomes indispensable when
Cas10 HD-mediated DNA degradation is insufficient in halting MGE DNA accumulation [16,24]. During viral
infections, Csm6 activity does not seem to impair cell growth, while for plasmid invasions, it causes temporary
growth arrest until the plasmid is cleared [16,24]. This may be due to a high concentration of phage genomes and
transcripts during infections, saturating the active Csm6, thereby reducing the impact on host transcripts.

Table 1. Summary of characterized type III-associated, cOA-activatable effectors, their activating cOA species,
substrate specificity, and phenotypic outcomes upon activation

Protein
Domain
architecture

No. of subunits in
the active form

Activating
cOAs Substrate

Phenotypic
outcome

Ring
nuclease
activity

Nucleases

Csm6 CARF-6H-HEPN 2 cOA4 [14,94]
cOA6

[13,14,22,26]

ssRNA Phage clearance [16]
Dormancy [35]

Yes
[21,23,94]

Csx1 CARF-HTH-HEPN 2
6 [95]

cOA4 [26–31] ssRNA Dormancy? [35] Yes
[30,31]
No
[27,29]

Can1 CARF-nuclease-like-
CARF-PD-D/ExK

1 cOA4 [36] dsDNA [36] Phage clearance [36] No [36]

Can2/Card1 CARF-PD-D/ExK 2 cOA4 [37,38] ssDNA [37]
dsDNA [38]
ssRNA
[37,38]

Dormancy [37]
Phage clearance
[37,38]

No [37,38]

NucC PD-D/ExK 6 cOA3 [90,91] dsDNA
[90,91]

Cell death [90,91] No data

Non-nucleases

CRISPR-LON Lon-SAVED 1 cOA4 [72] CRISPR-T
[72]

Cell death [72] No data

TIR-SAVED TIR-SAVED >3 cOA3 [87] NAD+ [87] Cell death [87] No data

Csa3 CARF-HTH 1 cOA4 [53] dsDNA [53] Transcriptional
regulation [53]

No [53]
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Csx1
Another CARF protein that was identified early on through bioinformatic analyses of type III-B CRISPR–Cas
operons was Csx1 [15]. Similar to Csm6, Csx1 also has an N-terminal CARF domain and a C-terminal HEPN
domain, but are separated by a helix-turn-helix (HTH) region, and forms homodimers (Figure 2A)
[18,21,25,26]. Interestingly, Sulfolobus islandicus Csx1 (SisCsx1) has a unique structure where it forms a
hexamer built from a trimer of homodimers [27]. Csx1 has non-specific ssRNase activity upon cOA binding,
catalyzed by the HEPN domains. The sequence specificity of this ssRNase activity can vary between homologs:
Pyrococcus furiosus Csx1 (PfuCsx1) cleaves after adenosines, while SisCsx1 cleaves in between two cytosine resi-
dues [18,28]. Some Csx1 homologs exhibit ring nuclease activity: PfuCsx1 can degrade cOA4 through the
HEPN domain, while Thermus thermophilus Csx1 does so through the CARF domain [27,29–31]. Others, such

Figure 2. Schematic illustration of the activities of characterized type III-associated, cOA-activatable effectors.

(A) Csm6 and Csx1 homodimers bind cOA, stabilizing them into an active form where the HEPN domains catalyze ssRNA

degradation. (B) Can1 occurs as monomers with two CARF domains, a nuclease-like and nuclease domain. Upon cOA

binding, the nuclease-like and nuclease domain form a composite active site that catalyzes dsDNA nicking. (C) Can2

homodimers bind cOA and shift to an active form where the nuclease domains form a composite active site that catalyzes

dsDNA nicking, ssRNA and ssDNA degradation. (D) Lon-SAVED is initially bound to CRISPR-T, and upon cOA binding, cleaves

CRISPR-T into CRISPR-T23 and CRISPR-T10. CRISPR-T23 then proceeds to degrade a yet unknown nucleic acid target. (E)

TIR-SAVED forms superhelical structures upon cOA3 binding, forming multiple composite NADase active sites for NAD+

degradation. (F) NucC homotrimers bind cOA3, causing conformational changes that promote homohexamer formation, and

forming dsDNA cleavage sites across the two homotrimers.
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as SisCsx1 and S. solfataricus Csx1, do not exhibit ring nuclease activity but seem to be dependent on dedicated
ring nuclease proteins to break down the cOAs [27,32]. Interestingly, the Marinitoga piezophila Csx1 homolog
was found fused to a dedicated ring nuclease domain, Crn2. The binding sites on both Csx1 and Crn2
domains appear to compete for cOA4, with the Crn2 domain having a higher affinity and faster enzyme
kinetics than the Csx1 domain. This fusion may ensure that Csx1-dependent ssRNase activity is only activated
when cOA4 levels are high enough to overcome their Crn2-dependent degradation [33]. Biologically, the
importance of Csx1-related ssRNase activity in type III defense varies among different species. For example,
SisCsx1 is necessary for type III-B CRISPR–Cas plasmid interference in S. islandicus [34]. However, in P. furio-
sus, PfuCas10 and PfuCsx1 seem to serve redundant roles in plasmid interference, where a combination of
PfuCas10 HD domain mutations and either PfuCsx1 or PfuCas10 Palm domain mutations are necessary to
abrogate defense [30]. The impact of Csx1-mediated RNA degradation on the fitness of the host remains to be
determined, but it is suggested that it would be similar to Csm6 [35].

Figure 3. Schematic illustration of the anticipated activities of bioinformatically-predicted type III-associated,

cOA-activatable effectors.

(A) CARF or SAVED proteins with promiscuous nuclease activity, cleaving both self- and non-self nucleic acids. (B) CARF or

SAVED proteins with DNA binding domains could enhance or repress downstream effector genes. (C) CARF or SAVED proteins

with transmembrane domains could form pores that depolarize the membrane, depriving the cell of energy. Alternative

strategies to disrupt the membrane could be employed too. (D) CARF proteins with predicted adenosine deaminase domains

converting ATP into Inosine triphosphate (ITP), depleting cellular ATP levels. (E) CARF or SAVED proteins with a fused Lon

protease domain liberating a toxin that kills the cell.
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Can1
Besides RNA, cOA-activatable nucleases can also degrade DNA, as seen with Can1 (CRISPR ancillary nuclease
1). Can1 appears to be limited to the genus Thermus, and unlike Csm6 and Csx1, Can1 operates as a
monomer and contains two CARF domains separated by a nuclease-like domain and a C-terminal PD-D/ExK
nuclease domain [36]. Binding of cOA to TtCan1 induces a conformational change to form a composite DNA
cleavage site, formed by the nuclease-like and PD-D/ExK domains, nicking supercoiled DNA at random sites
(Figure 2B). This nicking activity is believed to slow down viral replication by mediating the collapse of DNA
replication forks and subsequently causing dsDNA breaks in rapidly replicating phage genomes.

Can2/Card1
A close relative of Can1, Can2/Card1 (cOA-activated ssRNase and ssDNase 1) has a domain architecture com-
posed of an N-terminal CARF and a C-terminal PD-D/ExK nuclease domain, and forms homodimers similar
to Csm6 and Csx1 [37,38]. Upon cOA4 binding, two studies have shown that Can2 degrades ssRNA in vitro
[37,38]. For DNase activity, one study showed ssDNase but not dsDNAse activity with the Treponema succini-
faciens Can2, while another study showed progressive DNA nicking activity that eventually led to dsDNA deg-
radation with Sulfobacillus thermosulfidooxidans and Thioalkalivibrio sulfidiphilus Can2 (Figure 2C) [37,38]. It
is likely that its canonical function is DNA nicking, given two homologs are known to exhibit this activity. In
vivo, Can2 is suggested to induce dormancy in response to phage infection and plasmid transformation [37].
Can2 is thought to introduce DNA lesions in both the host and phage genome and acts in parallel with Cas10
to eliminate target DNA [37]. In contrast with this, another study found that Can2 provided phage immunity
without causing any noticeable growth defects of the host, suggesting that Can2 adequately slows down phage
replication similar to Can1 [38].

Non-nuclease CARF
Many of the currently characterized CARF proteins associated with type III immunity are nucleases, which aid
in defense by promiscuously degrading both self and non-self nucleic acids. Although more research is needed,
it appears that most of these systems operate as an altruistic mechanism to protect the population by inducing
cell dormancy or cell death of the infected individual. Similar to other abortive infection mechanisms, there are
multiple ways to induce dormancy or cell death and this is reflected by the many catalytic activities that are
predicted to be associated with CARF proteins [39–48]. Here, we will discuss a few interesting examples of
downstream type III effectors and speculate how they might induce dormancy or cell death.

cOA-responsive transcriptional regulator
The only experimentally characterized non-nuclease CARF effector known to date is a transcriptional regulator,
Csa3, which is often found in type I-A systems (Figure 3B) [49]. These proteins are a fusion between a CARF
domain and an HTH domain, commonly involved in DNA binding and influencing expression. The complete
regulatory functions of these effectors appear to be very complex, but hints at cross-talk between type III and
type I systems. It has been shown that Csa3 is involved in the regulation of type I CRISPR adaptation, as well
as providing a feedback loop to type III interference [50–54]. Furthermore, Csa3-mediated activation of DNA
repair genes has been demonstrated, indicating that the network of gene regulation by type III associated effec-
tors might not be constricted to CRISPR-related genes [55].

Transmembrane CARF effectors
In silico analyses indicated that many CARF proteins are fused to a transmembrane (TM) domain [39]. One
mechanism could be that these CARF-TM proteins form ion channels in the membrane upon activation by
cOAs (Figure 3C). Subsequent depolarization of the membrane would be a means to disrupt many processes in
the cell, eventually resulting in altruistic cell death, akin to some superinfection exclusion systems encoded on
prophages [40]. Alternatively, CARF-TM activation could also result in complete mechanical disruption of the
membrane, as seen in other abortive infection systems [47,56].

CARF adenosine deaminase
Although not as widespread as the CARF-TM fusions, some CARF proteins have an adenosine deaminase
(ADA) domain. These enzymes typically convert adenosines into inosine residues, and some

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).1358

Biochemical Society Transactions (2022) 50 1353–1364
https://doi.org/10.1042/BST20220289

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/50/5/1353/938954/bst-2022-0289c.pdf by guest on 10 April 2024

https://creativecommons.org/licenses/by/4.0/


non-CARF-associated ADAs have important housekeeping roles in prokaryotes, such as the editing of tRNAs
[57]. Activated CARF-ADA could, therefore, act by dysregulating these processes to induce cell death.
However, the deamination of nucleotides could also be leveraged to deplete the cell of ATP, similar to a strategy
that is employed by other phage defense systems (Figure 3D) [48].

CARF-Lon effectors
The active domain of a family of housekeeping proteases, the Lon domain, also seems to be adapted for type
III-mediated phage defense, as demonstrated by the bioinformatically predicted CARF-Lon fusions [39].
Canonical Lon proteases are involved in the degradation of misfolded and abnormal proteins as well as certain
regulatory proteins [58–61]. In the context of phage defense, we speculate that the CARF-Lon protein, when
activated by cOA, could either cleave essential host protein targets or acts as an aggressive promiscuous prote-
ase, both geared towards killing the host (Figure 3D).

SAVED effector proteins
In archaea and bacteria, cyclic oligonucleotide-based antiphage signaling system (CBASS) immunity systems
are widespread, providing a diverse arsenal of anti-phage defense tools [62–66]. Typically, these systems encode
a cGAS/DncV-like nucleotidyltransferase (CD-NTase) protein, responsible for sensing the presence of phage
and the subsequent synthesis of a second messenger molecule [67,68]. The messenger molecules resemble sig-
naling molecules of type III defense but can contain a variety of nucleotide moieties and different linkages
between them. Upon recognition by CD-NTase-associated protein (Cap) effectors, an elaborate immune
response is initiated that can lead to cell death. SAVED is a common sensing domain for these Cap proteins
and has long been predicted to be involved in type III immunity, but was until recently not experimentally
demonstrated [39,69]. Although this sensing domain has limited sequence similarity to CARF domains, it is
thought to be a highly divergent version of CARF, fused to a variety of effector domains [39,68,70].

SAVED nucleases
Similar to the abovementioned CARF-nuclease fusions, a large array of different domains predicted to confer
non-specific (ribo)nucleases are commonly found in SAVED proteins (Figure 3A) [39]. Notably, the
SAVED-HNH fusion proteins appear to be a common example. Of note, this domain, named after the catalytic
residues, is also responsible for sequence-specific target cleavage in some type II CRISPR–Cas systems [3,71].

Lon-SAVED
The first example of a connection between SAVED and type III CRISPR–Cas, a Lon-SAVED protease, was
recently demonstrated and revealed a new mechanism by this system to aid in defense [72]. The Lon-SAVED
effector (CRISPR-Lon) contains a C-terminal SAVED sensing domain, consisting of two CARF-like domains,
fused to a N-terminal Lon protease domain. Binding of a cOA4 messenger molecule induces an allosteric
change in the protein that activates this effector (Figure 2D). Interestingly and in contrast with canonical Lon
proteases, CRISPR-Lon appears to have a specific target protein, CRISPR-T. The 32 kDa CRISPR-T protein is
cleaved by activated CRISPR-Lon into two fragments (∼23 and ∼10 kDa). The ∼23 kDa fragment bears struc-
tural similarity to MazF, which is a toxin known to cleave specific rRNA, mRNA and tRNA molecules, leading
to abortive infection [73,74]. The triggering of a toxin/cell-death signal by a protease is something observed in
both prokaryotes and eukaryotes and seems to be an evolutionarily conserved strategy for inducing cell death
[75,76]. It is, therefore, anticipated that similar type III CRISPR–Cas protease-mediated defense strategies will
be uncovered, acting through different protease-like toxins that perturb essential cellular targets. A similar strat-
egy was found to be deployed by a type III-E associated caspase effector, which is activated via protein:protein
interactions between it and the type III complex rather than cOA signaling [77–79].

TIR-SAVED
The Toll/interleukin-1 receptor (TIR) domain is widely found in all domains of life [80–84]. In humans, this
domain is often present in Toll-like receptors to mediate signaling for innate immunity. In response to binding their
ligand(s), TIR domains of certain immune receptors in plants synthesize a signaling molecule to induce cell death
[82]. In Thoeris, a bacterial anti-phage defense system, TIR domains are responsible for the production of nicotina-
mide adenine dinucleotide (NAD) derived signaling molecules which in turn allosterically activate a TIR domain-
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containing enzyme that aggressively depletes NAD+ to arrest cell growth [85]. The depletion of NAD+ is a strategy
that is also employed by a prokaryotic short Argonaute immune system upon the detection of invading DNA [86].
The modularity of known CBASS systems and their interplay with CRISPR–Cas defense is highlighted by a

recent study on a TIR-SAVED effector protein [87]. The CBASS system it originated from generates cOA3 mes-
senger molecules. These are bound by TIR-SAVED and mediate its multimerization, forming composite active
sites to degrade NAD+ (Figure 2E). TIR-SAVED can induce cell death in vivo when placed in the context of a
type III system by replacing the canonical Csm6 CARF ribonuclease by the TIR-SAVED effector. This demon-
strates interchangeability between CBASS and CRISPR–Cas defense systems, but natural examples of type III
CRISPR–Cas systems in combination with the NucC nuclease and TIR-SAVED effectors exist as well [39]. The
widespread usage of TIR domains in defense systems across the domains of life can be seen as proof that
several eukaryotic immune systems originated from an ancestral prokaryotic anti-phage system [83].

Transmembrane SAVED effectors
Similar to CARF effectors, many SAVED proteins containing a TM domain have been predicted bioinformati-
cally [3]. A similar mechanism as described for the CARF-TM fusions could be employed by this type of
SAVED effector (Figure 3B). Although rather speculative, an exciting possibility arises that these TM type III
effectors position the sensory SAVED domain on the outside of the cell, hinting at intercellular signaling.
Signaling the presence of infection to others in the population can be seen in other CRISPR–Cas systems as a
means to strengthen the immune response [88,89].

NucC, a non-CARF and non-SAVED effector
cOA-activatable effectors are not limited to CARF and SAVED proteins, as exemplified by NucC. NucC (nucle-
ase, CD-NTase associated) is a CBASS-associated protein that has also been found in 31 type III CRISPR–Cas
loci [90]. In both CBASS and type III systems, NucC forms homotrimers with three active sites on the outer
edge. Upon binding of cOA3, pairs of NucC homotrimers bind to form homohexamers, juxtaposing pairs of
partial active sites between the two homotrimers and forming dsDNase active sites (Figure 2F). This results in
double-stranded breaks on dsDNA with two-base 30 overhangs [90]. In vivo, in both CBASS and type III
CRISPR–Cas systems, NucC appears to act through an abortive infection mechanism whereby its activation
causes the complete destruction of the host chromosome, culminating in cell death [90,91]. This can be a bene-
ficial characteristic of this nuclease to overcome phage escape strategies, such as the ability of type
III-associated NucC to overcome jumbo phage infections in Serratia [91]. These phages protect their DNA
after injection using a proteinaceous nucleus inside the host [92]. Instead of targeting phage DNA, NucC
degrades the host genome and thereby kills the host to prevent phage progeny (abortive infection).

Perspectives
• Type III CRISPR–Cas systems are sophisticated multilayered immune systems, aiming to clear

invading MGEs by cleaving target RNAs complementary to the guide RNA, but will also
produce cOA signaling molecules to activate its second layer of defense, mediated by CARF
and SAVED proteins.

• CARF and SAVED proteins have a plethora of catalytic activities associated with them, most of
which seem to be geared towards killing the infected host (and thereby preventing viral progeny) to
provide population-wide immunity; a mechanism known as abortive infection. Collateral damage
observed in other CRISPR–Cas systems indicates that this strategy is not limited to type III [2].

• Most CARF proteins characterized to date are sequence-unspecific (ribo)nucleases that
induce cell death or dormancy by cleaving both self and non-self nucleic acids. However, bio-
informatic analyses have shown that many other CARF and SAVED proteins are fused to other
catalytic domains (proteases, deaminases, NADases, etc.). If and how these different activities
contribute to type III mediated defense and what effect they will have on the fitness of the
host will be an interesting challenge for the future.
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• An unresolved issue is how adaptive type III CRISPR–Cas systems that elicit abortive infection
select for interference-proficient spacers in nature. To resolve this issue, more work on investi-
gating the fate of clonal subpopulations in spatially structured ecological niches is required [93].
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