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In recent years, our understanding of the structure, mechanisms and functions of the
endo-lysosomal TPC (two-pore channel) family have grown apace. Gated by the second
messengers, NAADP and PI(3,5)P2, TPCs are an integral part of fundamental signal-trans-
duction pathways, but their array and plasticity of cation conductances (Na+, Ca2+, H+)
allow them to variously signal electrically, osmotically or chemically. Their relative tissue-
and organelle-selective distribution, together with agonist-selective ion permeabilities
provides a rich palette from which extracellular stimuli can choose. TPCs are emerging as
mediators of immunity, cancer, metabolism, viral infectivity and neurodegeneration as this
short review attests.

Acidic Ca2+-stores
These H+-rich (acidic) vesicles encompass a spectrum of organelles that include endo-lysosomes,
lysosome-related organelles and secretory vesicles which are endowed with the common ability to
store and release Ca2+. That is, in addition to their roles of trafficking cargo, repairing membranes,
degrading macromolecules and nutrient sensing, acidic vesicles generate Ca2+ signals. The purpose of
this article is to update our previous overview [1] with more recent developments pertaining to one
particular family of Ca2+-permeable channels found on such acidic vesicles — the TPCs (two-pore
channels) — and we confine our remarks to the mammalian channels.
The free [Ca2+] within endosomes is tens of micromolar, whereas in lysosomes it is ∼300–600 mM

[2,3] and comparable to that of the other major Ca2+ store, the endoplasmic reticulum (ER). The
route of lysosomal Ca2+-filling remains unclear with candidates being either Ca2+/H+ exchange [2,4]
(Figure 1), Ca2+ transfer from the ER via IP3 receptors (IP3Rs) [5] or the ATP13A2 transporter [3].
Whilst cytosolic [Na+] is ∼12 mM, the lysosomal luminal [Na+] is reported from 21 mM [6] to
150 mM [7], though 21 mM may be more reliable since low temperatures and the lack of ATP (in [7])
disrupt normal monovalent cation gradients [8,9]. The resting membrane potential (ΔΨ) across lyso-
somes is luminally positive (19–100 mV) [2,10,11] (Figure 1).
Two features distinguish the acidic Ca2+ stores from the ER: first, they are a diminutive Ca2+ source

compared with the ER (typically 10% of the ER volume [12]) and therefore, the total amount of Ca2+

that is released by acidic Ca2+ stores is small by comparison with the ER’s; second, acidic vesicles are
arguably more motile, traversing large distances relative to their size. Both these features afford acidic
Ca2+ stores the capability of substantially impacting physiology and ‘punching above their weight’.

TPCs — structure and distribution
Analogous to IP3Rs evoking Ca2+ release from the ER, the gating of Ca2+-permeable channels on
acidic vesicles increase cytosolic Ca2+. There are multiple families of channels found across the vesicu-
lar continuum and include the TPCs, mucolipins (TRPMLs) and P2X4 receptors. Their pattern of
expression is not only cell-type dependent but also aligned with certain vesicle populations. Mouse
and human each contain two isoforms, TPC1 and TPC2, that are ubiquitously expressed throughout
the body and particularly high in kidney and immune cells [2]. Generally, TPC1 predominates in
mildly acidic vesicles (recycling endosomes, early endosomes; pH 5.7–6.9) whilst TPC2 is mainly
found in more acidic late-endosomes/lysosomes or secretory vesicles (pH 4.0–5.6) [2] (Figure 2).
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Hot on the heels of the plant TPC atomic structure [13], mammalian TPC1 [14] and TPC2 [15] were
resolved by cryogenic electron microscopy and complemented recently by a zebrafish TPC3 structure [16]. The
structure of all three isoforms is a similar TPC dimer that strikingly resembles voltage-gated ion channels, to
which TPCs are evolutionarily related [17] (Figure 3). However, mammalian TPCs are unusual in the
cation-channel pantheon in having a selectivity filter without charged residues [18] so that, instead, the main
barrier to permeation is a steric hydrophobic gate that is relieved upon ligand binding [19]. Expression of the
pore-forming region alone results in a constitutively active cation channel [20]. Unlike TPC2, TPC1 is voltage-
dependent by virtue of a unique voltage-sensing S4 domain [14] (Figure 3).

Channel regulation
As important signalling switches, Ca2+ channels exhibit sensitivity to multiple inputs, be they ions, ligands or
proteins, and TPCs are modulated by all three classes.

Ca2+ feedback
Classically, IP3Rs are regulated strongly by both cytosolic and luminal Ca2+ which amplify or dampen
signals [21]. The Ca2+ effects upon TPCs are, however, more variably reported. On the one hand, TPC1 was sti-
mulated by cytosolic Ca2+ [22] via a shift in its voltage activation [23] which might reinforce endosomal Ca2+

release. On the other hand, others do not find any effect of cytosolic Ca2+ on TPC1 [24]. An effect of cytosolic
Ca2+ on TPC2 is not reported, and its vestigial cytosolic EF-hands lack the residues for Ca2+-binding [15].
Regulation by luminal Ca2+ is equally inconsistent. Luminal Ca2+ has been shown to have no effect on TPC1 [22],

Figure 1. Second-messenger synthesis couples plasmalemmal receptors to endo-lysosomal TPCs.

A model whereby cell-surface receptors can promote the synthesis of either second messenger, the dinucleotide, NAADP or

lysosome-specific lipid, PI(3,5)P2. Cations (X+) exit the acidic vesicle when TPCs are gated by NAADP via small accessory

proteins, LSm12 or JPT2, or by PI(3,5)P2 that binds directly to TPCs. The lysosomal lumen is acidic by virtue of the

V-H+-ATPase, which is also the primary drive of the luminally positive membrane potential (ΔΨ). In one model, the H+ gradient

drives Ca2+ uptake via an unknown exchanger.
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an inhibitory one (by locking into a closed state) [23] or a stimulatory one [25]. For the other isoform, TPC2 is
activated by luminal Ca2+ [26]. The reason for the discrepancies is unknown.

Second messengers
Unlike monogamous IP3Rs, TPCs are more promiscuous and respond to either of two second-messengers. One
is the cytosolic soluble second messenger, NAADP (nicotinic acid adenine dinucleotide phosphate), the other
is a lysosome-specific lipid, PI(3,5)P2 (phosphatidylinositol 3,5-bisphosphate) (Figure 1). Befitting a messenger
role, their levels increase in response to different cell stimuli e.g. [27–29], and TPC-dependent Ca2+ signals (or
currents) can be evoked by either ligand. Whilst the route of PI(3,5)P2 synthesis is clear (PIKfyve [30]), that for
NAADP has, historically, been uncertain. Candidates include CD38 (or related ADP-ribosyl cyclases) [31–33],
SARM1 [34] and, more recently, the NADPH oxidases, DUOX1/2 [35].
Thanks to the atomic structures, we know that PI(3,5)P2 binds directly to TPC1 and TPC2 (Figure 3) and

how this gates the channel [14,15]; mutagenesis of complementary basic amino acids in the binding pocket
abolishes activation by the phospholipid [14,15,36]. For NAADP, TPC stimulation is indirect, with NAADP
binding to a smaller, accessory protein(s) (Figure 1). Recent screens have finally identified NAADP-binding
proteins that mediate the gating of TPC, namely LSm12 [37] and JPT2 [38] (note: JPT2/HN1L was also
reported to activate ryanodine receptors (RyRs) [39]). These proteins were unexpected candidates given that
LSm12 is an RNA-binding protein and JPT2 is otherwise mechanistically orphaned (although linked to
cancers) [40]. Attesting to its importance, LSm12 deletion is embryonic lethal [37]. Where and how these pro-
teins bind to TPCs (and whether there is any isoform selectivity [40]) will prove a key future direction.
The potential for two molecular messengers to converge upon one channel is unusual, and the physiological

consequence of this duality is ill-defined. Whether either (or both) messengers is required for TPC activation
requires further work and may also be context-sensitive. For example, in the same macrophage, TPC2 responds

Figure 2. Distribution of TPC channels throughout the endo-lysosomal system.

TPC1 channels are predominantly found in less acidic, earlier compartments, whereas TPC2 is found in later, more acidic

vesicles. Trafficking of cargo through the endo-lysosomal system (e.g. endocytosis, viruses, bacterial toxins) as well as vesicle

movement and fusion is also subject to TPC control.

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 1145

Biochemical Society Transactions (2022) 50 1143–1155
https://doi.org/10.1042/BST20220229

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/50/4/1143/936221/bst-2022-0229c.pdf by guest on 10 April 2024

https://creativecommons.org/licenses/by/4.0/


to PI(3,5)P2 for macropinosome resolution (i.e. shrinkage and resorption) [41], but to NAADP for
TPC-dependent phagocytosis [42]. Moreover, inhibition of PI(3,5)P2 synthesis with vacuolin-1 [43] did not
alter NAADP-induced Ca2+ release [44] implying there is little interaction between the messengers, at least in
fibroblasts. The messengers’ kinetics, uniqueness, redundancy or potential synergy may shape the signalling
palette from which stimuli can choose.

Figure 3. Structure of TPCs.

(A) Topology cartoon of a TPC monomer with tandem repeats of two ‘Shaker’ domains (six transmembrane domains each).

The positively charged amino acids (+++) in the S4 domains confer voltage sensitivity in TPC1. Magenta branches depict

luminal glycosylation. (B) Cryo-EM structure of the human TPC2 dimer (PDB: 6NQ0) with the surface structure of A and B

chains in blue and pink, respectively. The lipid, PI(3,5)P2, is shown as a space-filling model (yellow, red and orange) bound to a

pocket in the A chain (a second lipid molecule, bound to the equivalent pocket on the B chain, cannot be seen behind).

X+ represents the direction of cation flow. (C) human TPC2 as a ribbon diagram flipped 90° compared with (B) and viewed

end-on from the cytosolic face. The central pore (green shading) is contributed to by both monomers. Both PI(3,5)P2 molecules

bound are visible. Structures were generated using UCSF Chimera X [132].

Figure 4. Ionic permeabilities are a function of the TPC isoform and stimulus.

Models depicting the relative permeabilities to Ca2+, Na+ and H+ are conveyed by the size of the coloured plumes. For TPC2,

soluble NAADP evokes TPC2 currents with comparable Ca2+ and Na+ conductances, whereas the lipid PI(3,5)P2 stimulates

Na+-selective currents.
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Ion permeabilities
Ionic permeabilities inform us as to the possible (and multiple) roles of TPCs. For mammalian TPC1, its per-
meability sequence has been reported as Na+> K+> Ca2+ [24] or H+> K+> Na+≥ Ca2+ [22], whereas for TPC2
its rank order has been given as Na+> Ca2+ > K+> Cs+ [7,26,44–47]. In spite of common trends, the absolute
permeability ratios recorded for a given TPC isoform perplexingly vary, e.g. the PCa/PNa for TPC1 is recorded
as 0.98 [22], ∼0.05 [23] and 0.005 [24]. As with the Ca2+ feedback above, the different methodologies (e.g.
lipid bilayers, whole-lysosome recording, ectopic expression in plant vacuoles) may be a contributing factor to
some of the discrepancies.
Just as the plasmalemmal NMDA receptor is a transducer of both electrical (Na+) and chemical signals

(Ca2+), so too may TPCs be multi-functional and alter endo-lysosomal ΔΨ and osmolarity (Na+), cytosolic
Ca2+ signals or vesicular pH (pHL) (Figure 5). Note that egress of Na+ depolarises the endo-lysosomal
membrane [48], which impacts both Ca2+-refilling and -release [2,49,50], and the ability of the electrogenic
V-H+-ATPase to acidify the lumen [51]. Acidic vesicle ΔΨ is manifestly important physiologically e.g. for
vesicular fusion [52], cholesterol storage [49] and phagocytosis [50].
When a Na+ conductor, TPC1 modulates vesicular ΔΨ and electrical excitability [24]. In an osmotic modal-

ity, TPC1/TPC2 co-ordinate macropinosome resolution when their Na+ fluxes drive Cl− co-transport, water
movement and pinosome shrinkage [41,53]. As Ca2+-permeable channels, TPCs have arguably garnered more
attention physiologically (see below). Experimentally, it is currently not trivial to distinguish between the Na+

and Ca2+ modalities of TPC signalling in driving biological processes, in part due to our inability to monitor
Na+ fluxes in situ.
However, the permeability sequence of TPCs is not immutable and depends on the stimulating messenger.

Activation of TPC2 via the PI(3,5)P2-pathway promotes a predominantly Na+ current (PCa/PNa∼ 0.08),
whereas the NAADP pathway evokes an eight-fold larger Ca2+ conductance (PCa/PNa∼ 0.65) [54] (Figure 4).
TPC1 may also exhibit ligand-dependent permeability, albeit more modestly, with PI(3,5)P2 shifting the PCa/
PNa from 0.98 to 0.42 [22]. Ligand-induced permeability changes are a unique feature of TPCs and thereby
resolve early controversies as to the permeant ions. Thus, by the judicious selection of messenger, TPCs may be
recruited to signal via Na+ (osmolarity, ΔΨ) or Ca2+ or pHL.
How NAADP elevated the pHL of acidic Ca2+ stores was unclear [29,55] until the demonstrations that both

TPC1 and TPC2 conduct H+, i.e. efflux pathways from vesicles [22,54] (Figure 5). Therefore, NAADP may
signal not just by an increase in cytosolic Ca2+, but by a coincident alkalinization of endo-lysosomes.
Interestingly, pHL changes parallel the Ca2+ signals in that H+

fluxes are stimulated by the NAADP- but not
the PI(3,5)P2-pathway with TPC2 [54]. In part via effects on vesicular pH, TPC2 influences melanosome pig-
mentation [47,56] and autophagy [57].

Figure 5. Models of different ionic signalling modalities for TPC2.

With NAADP as the messenger, it binds to its accessory protein (LSm12 or JPT2, red hexagons) to evoke local Ca2+

nanodomains that are uniquely sensed by closely associated Ca2+-binding proteins (‘decoders’, brown hexagon)). When

PI(3,5)P2 is the stimulus, Na+-selective currents are evoked which can depolarise the lysosome (ΔΨ) or promote osmotic

changes and vesicle shrinkage (by Cl− co-transport and concomitant water loss). NAADP can also promote H+ efflux through

TPC2 and increase the lysosomal luminal pH (pHL).
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In summary, different messengers evoke different ionic signals. This may explain, for example, why PI(3,5)P2
is selected for macropinosome resolution: the lipid favourably stimulates fluxes of Na+ (but not H+) to drive
Cl− and water loss [41]; NAADP would have been unfavourable since it evokes smaller Na+ fluxes and an
increase in pHL that could inhibit the essential Cl− co-transport [53].

Pharmacology
Compounds that modulate TPCs are a growing family, with currently more inhibitors to choose from than
activators.

Inhibitors
Most of the inhibitors are pore-blockers. At high concentrations, traditional voltage-gated Ca2+-channel block-
ers interact with TPCs, e.g. verapamil inhibits TPC1 [54] and TPC2 [7] currents and NAADP-induced Ca2+

release [58,59]. Screens have re-purposed drugs as inhibitors of NAADP-induced Ca2+ release (by implication
and by modelling, as TPC blockers) [60–62]. One broad-spectrum channel blocker, tetrandrine, is used to
inhibit TPC2 [54,58,59] and TPC1 [63], and refinement of its structure has revealed more potent analogues
towards TPC2, albeit with variable discrimination from TPC1 or TRPMLs [64]. The natural dietary flavonoid,
naringenin, inhibits TPC1 and TPC2 with low affinity [65] and other Asian-plant flavonoids (pratensein and
duartin) block TPC2 [66].
In terms of antagonising the messengers, the only cell-permeant NAADP antagonists that we have are

BZ194 [67], the original Ned-19 [68], and its minimally modified analogue, Ned-K [69,70]. We do not yet have
any specific inhibitors of the lipid-activation site, although high concentrations of Ned-19 unexpectedly block
PI(3,5)P2-induced TPC2 currents [58].

Activators
Historically, activation of TPCs in intact-cell populations has been limited to NAADP delivery via liposomes
[71,72] or cell-permeant NAADP (NAADP/AM) [73] which is notoriously labile. The recent discovery of
stable, cell-permeant agonists that mimic these two TPC activators will open up the field, even if robust Ca2+

responses require the ectopic expression of TPC2 [54]. Each mimetic targets the TPC2 isoform (TPC2-A1-N
[NAADP mimetic] and TPC2-A1-P [PI(3,5)P2 mimetic]), and are selective for TPC2 over TPC1 and
TRPMLs [54]. TPC2-A1-P requires the lipid-binding site on TPC2 [54] (Figure 3) — likely a direct interaction
with the channel — but the TPC2-A1-N activation mechanism is currently unclear. Does it bind to the
NAADP accessory proteins LSm12/JPT2, or does it bind to TPC2 directly and mimic their interactions?
Interestingly, photo-release of another lipid, sphingosine, acutely evoked Ca2+ signals via TPC1 (but not

TPC2) [74]; is this an underexplored new pathway? Surprisingly, tricyclic antidepressants (TCAs) and the
motor-neuron-disease medication, riluzole, are TPC agonists [75], but their poly-pharmacology towards other
transporters will probably limit their usefulness in intact cells.
Of broad interest, the mTOR inhibitor, rapamycin, evokes TPC2-dependent Ca2+ transients in myocytes [59]

and promotes TPC2-mediated currents in synergy with PI(3,5)P2 [76]. Likewise, rapamycin activates TRPML1
by binding to the channel and synergises with the messenger, PI(3,5)P2 [77,78]. Whilst rapamycin activation of
TRPML1 is direct, activation of TPC2 is suggested to be indirect via inhibition of mTOR [59,76,79].

Protein regulators
Other signalling inputs may interact with TPCs including protein kinases such as LRKK [80], JNK/p38 [81],
mTOR [79] and the small GTPase, Rab7 [82]. Protein kinase A was proposed to modulate TPC2 currents via
phosphorylation of Ser666 [46] although, curiously, this residue lies within the lysosomal lumen and not
accessible to cytosolic cAMP signals. In some cases, the physiological context for these modifiers is poorly
defined.

Polymorphisms
In the global population, TPC2 naturally occurs with a spectrum of different polymorphisms [83] and some
impact TPC2 function. The degree of melanin pigmentation is inversely related to TPC2 activity [66] and two
gain-of-function (GOF) polymorphisms (in different regions of the TPC2) each promoted blond-hair colour by
independent mechanisms [76]. More recently, it was shown that the M484L mutation required an additional
‘permissive’ L564P polymorphism [83]. GOF mutants certainly produce larger currents in response to
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PI(3,5)P2 [54,76,83] or to the TPC2 agonists TPC2-A1-N and TPC2-A1-P [54]. However, it is less certain
which signalling modality of TPC2 these polymorphisms produces the phenotype when roles for Ca2+ [56], Na+

(ΔΨ) [47,83] and pH [47,56,83] have all been posited for pigmentation.

TPC Ca2+-decoding
How are TPC-dependent Ca2+ signals converted (decoded) into downstream responses? A common theme is
that TPCs affect vesicle formation, trafficking, maturation and movement, many of which are sensitive to Ca2+

and lysosomal membrane potential. Being small Ca2+ stores, endo-lysosomes are designed to generate local
rather than global Ca2+ signals, and TPCs couple to downstream physiology via local Ca2+ signals for which
other Ca2+ sources cannot substitute, as exemplified by phagocytosis [41,42], exocytosis [84], membrane
contact site (MCS) formation [85], receptor trafficking [86,87], development [31], vesicular fusion/motility
[88,89]. Ca2+-decoders include Ca2+-dependent channels, protein kinases/phosphatases and membrane-fusion
machinery.
Via Ca2+ release, TPCs trans-activate Ca2+-regulated ion channels on other membranes that are closely

apposed, probably at MCSs. Via Ca2+-induced Ca2+ release (CICR), IP3Rs or RyRs on the ER can amplify the
small Ca2+ release from endo-lysosomal TPCs to evoke global Ca2+ signals [90]. At the plasma membrane,
Ca2+-sensitive channels (e.g. TRPM4/5 [91]) depolarise pancreatic β-cells following glucose-induced bursts of
local NAADP/TPC Ca2+ signalling [91] under the plasma membrane [92]. Although there are also
Ca2+-sensitive K+ channels on lysosomes that regulate vesicular ΔΨ, so far only Ca2+ released by TRPML1 has
been linked to their activation [49].
How local TPC Ca2+ signals are otherwise decoded is underexplored. Privileged TPC-coupling to down-

stream processes implies that Ca2+-sensitive decoding proteins are intimately associated with TPCs and sense
these high Ca2+ nanodomains. Several TPC interactomes have been published (reviewed in [93]), but surpris-
ingly few Ca2+-binding proteins have been pulled out (e.g. annexins, although interactions have not always
been validated). Phagocytosis is uniquely driven by local Ca2+ from TPCs (but not global Ca2+ signals) [42],
where the Ca2+-dependent phosphatase, calcineurin, may be the Ca2+ decoder [42].
The molecular switches downstream of the immediate Ca2+-binding decoders are growing, and the GTPase,

dynamin, has been linked to the NAADP/TPC axis during ‘inward’ trafficking at phagocytosis [42] and endo-
cytosis of the glucose transporter, GLUT1 [94]. Regarding downstream phosphorylation, the MAP kinase,
ERK1/2, mediates cell proliferation driven by TPC2 [95], although ERKs are not themselves Ca2+-binding pro-
teins. In neuronal cells, the NAADP/TPC axis activates AMPK during autophagy [96]. In melanomas, TPC2
activates MITF (microphthalmia-associated transcription factor) via a GSK3β phosphorylation pathway [66].
Affirming a role in trafficking, fusion and vesicle motility, TPC1/2 interactomes are heavily biased towards
SNARE complex proteins such as VAMPs and syntaxins [93].

TPCs and health
Our appreciation of the importance of TPCs is expanding, but the following, recent examples incidentally
reinforce that the precise molecular details of the circuitry are often lacking and we do not know the messenger,
permeant ion or the decoders. Our understanding of the roles of TPCs is still in its infancy.
TPCs contribute to neuronal homeostasis [97]. The neurotransmitter, glutamate, uses an NAADP pathway

to drive Ca2+ signals [98–100] which in turn can drive neuronal autophagy via TPC1/2 [96]. TPCs are import-
ant for memory and long-term potentiation [99,101], neuroprotection [98] and axonal/neurite extension
[72,102]. Aberrant TPC signalling may contribute to neurodegeneration (see below).
In the vasculature, the role of TPCs is growing and, in particular, at vasculogenesis. The proliferation of

endothelial precursors cells is dependent upon NAADP and TPC1 [72,103], and several studies implicate TPC2
in angiogenesis e.g. [65,104]. During embryogenesis, TPC1 and TPC2 promote different aspects of muscle
development, namely myoseptal junction formation [105] and myogenesis, respectively [106]. Moreover,
innervation of the muscle likewise relies on the NAADP/TPC2 axis [102].
Metabolically, the nutrient-sensing kinase complex of mTOR inhibits TPC2 which thereby responds to nutri-

ent status [79]. Reciprocally, TPC2-KO enhances mTOR activity [107]. Manipulation of TPC1 expression
reveals a potential link to glucose and fat metabolism [108], and the net surface expression of GLUT1 [94] and
GLUT4 [108] glucose transporters are under the control of endosomal TPC1, probably by regulating endocyto-
sis. Deletion of TPC2 in mice exacerbates the effects of a high-fat diet by reducing cholesterol/triglyceride
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clearance [87,109], although this does not translate into weight gain [109], partly due to enhanced insulin sen-
sitivity in the absence of TPC2 [109].
TPCs are abundantly expressed in immune cells and are involved in often complex Ca2+ circuitry to regulate

vesicular trafficking events in an immune context [110]. Extracellular particle clearance and fluid sampling
during ‘inward’ trafficking events like phagocytosis [42] and macropinocytosis [41] in macrophages are mir-
rored by TPCs controlling ‘outward’ events like exocytotic secretion of histamine in mast cells [63], of cytolytic
factors in cytotoxic T-cells [84] and the surface-presentation of chemokine signalling molecules [111]. Thus,
TPCs may be invaluable during anaphylaxis, pathogen clearance by the innate immune system and T-cell
clonal expansion.

TPCs and disease
Given their physiological roles — particularly of membrane and protein trafficking — TPCs are implicated in a
wide range of diseases that are a significant health burden [112]. For neurodegenerative conditions like
Alzheimer’s (AD) and Parkinson’s (PD) diseases, endo-lysosomes seem to play a critical role [113].
Accordingly, TPC2, in particular, has been linked to both AD [114] and PD [115,116], perhaps a result of aber-
rant trafficking, and LRKK2 mutation in the case of PD.
TPCs contribute to cardiovascular complications. In blood vessels, TPCs exacerbate hypoxia-induced hyper-

tension [117,118] or macular degeneration [119]. In the heart, the NAADP/TPC axis mediates
adrenaline-evoked ionotropy [33] via local Ca2+ signals at MCSs [120], and TPC2-KO mice manifest cardiac
arrhythmias [121]. Similarly, NAADP/TPCs aggravate ischaemia-reperfusion injury: a regulatory subunit of
protein kinase A senses the injury-induced redox changes to switch off the NAADP/TPC-dependent Ca2+

release [122] that might otherwise couple to lethal mitochondrial permeability transition [69]; therefore,
pharmacological or genetic ablation of NAADP/TPCs protects against ischaemia-reperfusion injury [69,122].
Pathogens deliver toxins and/or enter the host cells to replicate, often gaining access via the endocytic

pathway where they traffic through the endo-lysosomal system by co-opting host pathways. Since TPCs regulate
vesicular uptake pathways (endocytosis, macropinocytosis, phagocytosis) [41,42,123] and are important for traf-
ficking [86,87,124], their importance in contributing to pathogenicity was likely. Accordingly, inhibiting TPCs
reduces infectivity of the Ebola virus [58], and of the Coronaviruses causing MERS [89] and Covid-19
[125,126]. Likewise, reducing the expression of the essential NAADP-binding protein, JPT2, also reduces viral
uptake [38]. For HIV-1 replication, the virus subverts TPCs to allow essential Tat protein release [127].
Bacteria require toxins to traffic through the endo-lysosomal system and those for cholera, diphtheria and
anthrax rely on TPCs [123,124,128].
An increasing field is that of TPCs in cancer [129] where, remarkably, TPCs impact different aspects.

Feeding the tumour requires a blood supply and TPCs help drive angiogenesis [65,104]. Metastatic invasion
and migration of the tumour cells themselves is another TPC-dependent process [66,104,130], and finally,
tumour proliferation is under TPC2 control [64,66]. Consequently, TPC inhibition reduces tumour mass
[64,104], and TPC1 and TPC2 may differentially contribute [131]. It is germane that the NAADP-binding
protein, JPT2, is implicated in cancer progression [40].

Conclusion
In this brief overview, we have highlighted the diversity of both the ionic nature of the TPC signals and the
breadth of the (patho)physiological processes in which TPCs play an important role, and this is only set to
grow. A common theme is the involvement of TPCs in vesicular trafficking. With still so many unknowns, and
the likely intersection with hitherto unsuspected pathways, the field of endo-lysosomal ionic signalling will
continue to be a rich source to mine.

Perspectives
• TPCs are endo-lysosomal Ca2+-permeable channels that are emerging as important signal

transducers across biology and phyla.

• Unusually, their ion conductances depend on the stimulus: they are plastic channels.
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• Different conductances confer the ability of TPCs to signal in different modalities (e.g. Ca2+,
electrical, lysosomal pH).

• New TPC protein regulators have recently emerged.
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