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Tissue development and homeostasis require coordinated cell–cell communication.
Recent advances in single-cell sequencing technologies have emerged as a revolutionary
method to reveal cellular heterogeneity with unprecedented resolution. This offers a great
opportunity to explore cell–cell communication in tissues systematically and comprehen-
sively, and to further identify signaling mechanisms driving cell fate decisions and
shaping tissue phenotypes. Using gene expression information from single-cell transcrip-
tomics, several computational tools have been developed for inferring cell–cell communi-
cation, greatly facilitating analysis and interpretation. However, in single-cell
transcriptomics, spatial information of cells is inherently lost. Given that most cell signal-
ing events occur within a limited distance in tissues, incorporating spatial information into
cell–cell communication analysis is critical for understanding tissue organization and
function. Spatial transcriptomics provides spatial location of cell subsets along with their
gene expression, leading to new directions for leveraging spatial information to develop
computational approaches for cell–cell communication inference and analysis. These
computational approaches have been successfully applied to uncover previously unrec-
ognized mechanisms of intercellular communication within various contexts and across
organ systems, including the skin, a formidable model to study mechanisms of cell–cell
communication due to the complex interactions between the different cell populations
that comprise it. Here, we review emergent cell–cell communication inference tools using
single-cell transcriptomics and spatial transcriptomics, and highlight the biological
insights gained by applying these computational tools to exploring cellular communica-
tion in skin development, homeostasis, disease and aging, as well as discuss future
potential research avenues.

Introduction
Communication between cells is often mediated by various types of soluble and membrane-bound
factors, such as ligands, receptors, extracellular matrix (ECM), integrins and junction proteins [1].
Cell–cell communication is critical for cell fate decisions and tissue organization in multicellular
organisms [2–4]. Traditionally, cell–cell communication studies have relied on a large number of trad-
itional experiments, including histological section analysis of tissues, in vitro co-cultures, and in vivo
genetic manipulations [4]. However, these experiments are often limited to investigate communica-
tions among a very small number of cell types. Recently, single-cell RNA sequencing (scRNA-seq) has
emerged as a revolutionary method to reveal cellular heterogeneity in tissues with unprecedented reso-
lution and scale. It is increasingly clear that vast amounts of scRNA-seq data collected and published
to date inherently contain gene expression information on signaling crosstalk between cells. This
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offers an unprecedented opportunity to analyze the cell–cell communication events driving diverse cell fate
decisions across different tissues, and can leapfrog the field over the barrier typically associated with using trad-
itional experimental tools.
A number of computational tools have been developed to infer cell–cell communication by integrating

scRNA-seq data and prior knowledge of the interactions between signaling ligands, receptors and their cofac-
tors [2,5]. However, scRNA-seq does not capture the spatial distribution and local environment within tissue
[3]. Since signals often have a limited range between neighboring cells due to finite spatial diffusivity of the
ligands, spatial information is essential for understanding intercellular communication and tissue function.
Recently developed imaging techniques such as spatial transcriptomics, which can physically localize gene
expression to specific cell subsets in tissues, have increased our understanding of the roles of cell–cell commu-
nication in tissue [6]. Due to the low resolution and coverage of spatial transcriptomics, several methods have
been developed to characterize cell–cell communication by integrating scRNA-seq data with spatial information
from imaging methods [3].
Because of its complex cellular composition and the interplay among its different cell types, the skin is a

highly suitable and accessible model to study signaling mechanisms common to many other tissues [7–9]. In
this review, after introducing the crucial role of cell–cell communication in cell fate decisions, we first summar-
ize the computational approaches for cell–cell communication inference and analysis using scRNA-seq data
and emerging approaches for using spatial transcriptomics data. Then, we describe the biological insights that
can be gained by applying cell–cell communication analysis to the development, homeostasis, disease and aging
of skin tissue. Finally, we discuss future directions in the field.

Crucial role of cell–cell communication in cell fate
decisions
The skin consists of two distinct layers, including the upper epidermis and the dermis below it. Both layers
host different types of cells, including keratinocytes, melanocytes and Langerhans cells in the epidermis, while
the dermis contains fibroblasts, endothelial cells and various immune cells such as T cell, B cell, macrophages
and dendritic cells. Interactions between epidermal and dermal cell populations influence cell fate decision in
the skin [8]. For example, both epidermal Wnt signaling and dermal extracellular matrix cause fibroblast prolif-
eration in adult mice [10]. During early hair follicle morphogenesis and development, WNT, EDA and FGF
play vital roles in placode and dermal condensate fate commitment [11]. Dysregulation of these pathways leads
to abnormal development. Previous studies showed that ablation of Fgf20 in mice results in the failure of
dermal condensate formation [12]. Although many putative ligands and receptors involved in epidermis-dermis
interactions have been identified using histology [8,9,13], our systematic understanding of the complex mechan-
isms driving cell fate decisions remains obscure. The recent advance of single-cell RNA sequencing technology
can systematically assess gene expression, providing an unprecedented opportunity to understand complex cell–
cell communications systematically and comprehensively with the help of emerging computational tools for
cell–cell communication inference and analysis [2].

Computational approaches for cell–cell communication
inference and analysis using scRNA-seq data
To facilitate the cell–cell communication exploration and analysis, an increasing number of computational tools
have been developed to systematically infer cell–cell communication [5,14–22] (Figure 1). Computational infer-
ence relies on prior knowledge of ligand–receptor interactions based on relevant literature and public databases.
Currently, over 15 ligand–receptor databases have been built [2] (Figure 1). However, curation of such informa-
tion is laborious and requires careful examination of the role of different signaling molecules in each context,
as well as consideration of interactions from multiple other sources in the system. These databases are often
built from different resources, leading to incomplete and inherently biased information of ligand–receptor
pairs. Indeed, although these databases share the same original resources, including KEGG, STRING, Reactome
and Guide to Pharmacology, different databases often include distinct proportions of the secreted and cell–cell
contact interactions, and may under-represent certain signaling pathways and categories [14]. For example,
innate immune pathways and Hedgehog are under-represented in ICELLNET [21] and CellPhoneDB [14].
Compared with other databases that use only one ligand/one receptor gene pairs, CellChatDB [15],
CellPhoneDB and ICELLNET take into account complexes with multimeric ligands and receptors, leading to
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an accurate representation of known heteromeric molecular complexes. For example, signaling via BMP, IL,
Interferon, and TGFβ pathways requires the presence of more than one membrane-bound receptor subunits [23].
A lack of expression of any subunit blocks ligand–receptor interactions and the resulting downstream communi-
cation cascade. Recently, the integrated database OmniPath was built by combining all interactions from the
above databases as well as additional resources [24], leading to a more comprehensive resource for cell–cell com-
munication analysis. Although such a unified resource is particular useful for benchmarking various methods, it
also raises the possibility of false-positive data due to experimentally unvalidated ligand–receptor interactions as
well as false-negative data due to cross-talk between unvalidated ligands not being accounted for. In addition,
most of the databases are curated for human and mouse systems to the detriment of other established and

Figure 1. Methods for cell–cell communication inference, analysis and visualization.

(Left) Cell–cell communication inference requires at least two inputs. One is the expression profiles of signaling genes across cells or spots from

single-cell transcriptomics or spatial transcriptomics and the other is the prior knowledge of ligand–receptor interactions from a curated database.

Spatial location of each cell or spot can also be integrated with expression data for the inference. Example databases are listed at the bottom.

(Middle) Computational tools of cell–cell communication inference and analysis can be grouped based on whether they incorporate spatial

information, whether they consider the downstream response, or whether they are designed for comparison analysis across conditions. (Right) The

inferred cell–cell communication can be visualized using different plots and mapped onto the tissue based on their spatial locations. Examples of

cell–cell communication analysis from CellChat tool show that it can identify multicellular programs and perform comparison analysis across

conditions.
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emerging models. Future efforts should be made to address this, in particular for well-established vertebrate
models like zebrafish, a paradigm in developmental biology. Since inference methods are sensitive to the quality
of the databases, a comprehensive, high-quality resource is urgently required.
In addition to the varying databases of ligand–receptor interactions, different methods employed different

computational strategies for cell–cell communication inference [2,5,14–16,25,26]. The core assumption of these
methods is that the chance of a sender cell (i.e. a cell as signal source) communicating with a receiver cell (i.e.
a cell as signal target) is positively correlated with the expression levels of ligand and cognate receptor in the
sender and receiver cell, respectively. Most of the methods infer cell–cell communication between interacting
cell clusters (i.e. a group of cells) instead of individual cells [5]. Individual cell-based methods such as SoptSC
[27] are useful for studying cell–cell communication at single-cell resolution, but suffer from noise and high
data dimensionality and computational costs due to the large number of cells and ligand–receptor pairs
involved in computation. For methods that predict cluster–cluster communication, both CellChat [15] and
CellPhoneDB [16] infer statistically significant interactions by randomly permuting the cluster labels of cells.
More importantly, compared with other methods that only consider the expression of one ligand/one receptor
per gene pair, CellChat, CellPhoneDB and ICELLNET [28] consider the expression of the members of the het-
eromeric complex, which highlights the importance of subunits in cell signaling. For instance, soluble ligands
from the TGFβ pathway signal via heteromeric complexes of type I and type II receptors [29]. Tgfbr1 or
Tgfbr2 knockout mice exhibited impaired phenotypes in diverse biological processes, such as head and neck
carcinogenesis [30] and female reproductive tract [31]. The ligand–receptor interaction also depends on soluble
and membrane-bound cofactors [15]. For example, WNT-related cofactors positively and negatively modulate
WNT signaling. More recently, a new modeling framework was presented in CellChat to integrate all these
known interactions.
For a given signaling pathway, a receiver cell responds to signals from a sender cell by triggering downstream

gene responses, including altered transcription factor activity and target gene expression. While most of the
existing methods infer intercellular communication based only on expression of ligand–receptor pairs, several
methods have recently taken into account the intracellular downstream response in receiver cells [27,32–37]
(Figure 1). These methods could reduce false-positive communications by considering the expression of genes
for each receptor, transcription factor (TF) and target genes involved in a particular pathway. However, an
assumption of these methods is that the TF activity can be approximated by the gene expression level. Because
TF activation has multiple molecular mechanisms, it is essential that TF activity can be measured directly or
estimated based on the expression levels of its target genes. Thus, these methods potentially lead to additional
false positives. Including additional information from emerging technologies such as INs-seq [38] which
records scRNA-seq and intracellular protein activity, can improve inference.
Moreover, identification of signaling changes across different conditions is important for understanding how

distinct cell states respond to evolution, perturbations and diseases. Most of these methods only focus on the
intercellular communications in one biological condition, while several methods [15,22,39,40] have also been
developed recently to perform comparison analysis of cell–cell communication across conditions (Figure 1).
Different from iTALK [22] and Connectome [39], which identify altered signaling based on differential expres-
sion analysis, CellChat [15] performs comparison analysis of both cell–cell communication structure and
strength by performing joint manifold learning and quantitative contrasts. Differential expression-based
methods have advantages in detecting context-specific signaling, but likely fail to identify shared interactions
across distinct contexts. More recently, different from scTensor for a single condition [41], a sophisticated
approach called Tensor-cell2cell has been presented to decipher complex cell–cell communication patterns
across diverse conditions [42]. This method is attractive because it deciphers context-driven intercellular com-
munication by simultaneously accounting for multiple conditions by utilizing a tensor decomposition frame-
work. However, one limitation of this method is the requirement of the same cell types appearing across all
experimental conditions.
Rather than the interaction score-based methods, more advanced approaches are highly needed to infer and

compare cell–cell communication networks. Beyond inference, methods such as CellChat also include powerful
visualization features, which greatly facilitate the analysis and interpretation of complex intercellular communi-
cation networks (Figure 1). Currently, few efforts have been made to identify general rules for cell communica-
tion and how multicellular organisms exploit these rules to coordinate tissue morphogenesis and function.
While CellChat addresses this critical point by using a matrix factorization method, further improvements, like
including niche neighbor information, will greatly improve accuracy.
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Table 1 Examples studies of cell–cell communication analysis via existing or customized computational approaches
in skin development, injury, disease, cancer and aging Part 1 of 2

Sample Input data Methods Highlights Ref.

Skin development

Mouse early hair
follicle development

scRNA-seq CellChat Edn3–Ednrb signaling from dermal
condensate (DC) cells to melanocytes

[15]

Human neonatal
epidermis

scRNA-seq SoptSC Distinct signaling patterns for distinct
basal stem cell subpopulations

[53]

Human fetal skin scRNA-seq CellPhoneDB Interactions between double positive
αβγδ T cells and other immune cells, as
well as fibroblasts and endothelial cells

[54]

Skin injury

Mouse skin wound
healing

scRNA-seq CellChat Wnt5a-mediated
fibroblast-to-fibroblast, endothelial and
myeloid signaling

[15]

Mouse skin wound
healing

scRNA-seq CellPhoneDB Ephrin-mediated
epithelial-mesenchymal crosstalk

[55]

Enzymatic
disruption of
keratinocytes

scRNA-seq CellPhoneDB αvβ8 in Tregs activates TGF-β in
neighboring keratinocytes and further
promotes CXCL5 production and
neutrophil recruitment.

[56]

OTULIN-deficient
mice

scRNA-seq NicheNet Infiltrating immune cells contributes to
the inflammatory skin phenotype via
IL-1β and MCP-1 signaling in
OTULIN-deficient mice

[57]

Skin disease

Atopic dermatitis scRNA-seq CellChat CCL19–CCR7 mediated inflammatory
fibroblasts to dendritic cells signaling
was specifically active in lesional skin.

[15]

Atopic dermatitis,
Psoriasis

scRNA-seq CellPhoneDB Enhanced CXCL8–ACKR1 mediated
F13A1+ macrophage-to-ACKR1+
vascular endothelial cell signaling as
well as their interactions with
lymphocytes in disease

[58]

Psoriatic scRNA-seq Customized
analysis

Regulatory potential from resident
epidermal/mesenchymal cells to
dendritic cells during psoriasis

[59]

Vitiligo scRNA-seq Customized
analysis

CCR5–CCL5 signaling was critical to
effector CD8+ T cell and Treg function
in vitiligo

[60]

Skin cancer

Squamous cell
carcinoma

scRNA-seq CellChat Enhanced interaction between
TNS1high fibroblasts and cytotoxic T
cells in TME.

[61]

Murine melanoma scRNA-seq CellPhoneDB Stromal-immune interactions, such as
C3–C3AR1, CXCL12–CXCR4 and
CSF1–CSFR1 with macrophages as
primary target

[62]

Squamous cell
carcinoma

scRNA-seq and
spatial
transcriptomics, MIBI

NicheNet Immunosuppressive tumour-specific
keratinocyte signaling to
cancer-associated fibroblasts via
MMP9–LRP1 and TNC–SDC1 and to
endothelial cells via PGF–FLT1, PGF–
NRP2, and EFNB1–EPHB4.

[63]

Continued
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Emerging approaches for cell–cell communication
inference and analysis using spatial transcriptomics
Due to the finite spatial diffusivity of the soluble ligands in paracrine signaling and the physical contact
between adjacent cells in juxtacrine signaling [3], spatial information is vital to study cell–cell communication.
This spatial information of biological tissue is lost in scRNA-seq, but preserved in imaging-based technologies.
The recent advances of spatial transcriptomics such as Visium, STARmap, MERFISH and seqFISH+ [6],
greatly help to understand complex cell–cell communication by offering both spatial information and molecular
profiles. Given that spatial transcriptomics techniques often do not yet provide gene expression profiles at
single-cell resolution, integration of scRNA-seq and spatial transcriptomics data will be helpful in understand-
ing cellular composition and communication within and across tissues. Incorporating spatial information will
likely reduce false-positive inferred signaling links, because cells only communicate directly over a limited
spatial distance. Computational methods that do not use spatial information may fail to detect certain expected
ligand–receptor interactions [43]. Here, we discuss some emerging approaches that have been developed to
infer cell–cell communication using spatial information [44].
The key for spatial-informed approaches lies in the identification of spatially proximal cell clusters [45],

which are used to filter out spatially distant cell–cell communication events. Determination of spatial proximity
starts by representing the spatial information through a spatial network. Giotto randomly permutes cell cluster
labels [46], while Squidpy computes a co-occurrence score for clusters [47]. However, both methods solely
utilize spatial coordinates while neglecting gene expression information. To address this limitation, Stlearn
learns a joint representation by integrating both gene expression and image information. In contrast with other
methods, Stlearn also identifies spatial regions where interactions between cell types are most likely to occur by
grouping the spots with the most similar ligand–receptor co-expression values and calculating cell type diversity
across the tissue [48]. The identification of spatial regions with strongly active cell–cell communication can
potentially shed light into the signaling mechanisms responsible for certain biological processes. Recently,
several machine learning-based approaches have been proposed [49–52], which provide additional insights of
microenvironmental mechanisms from different spatial views. For example, NCEM reconciles variance attribu-
tion and communication modeling in a single model of tissue niches based on graph neural networks [52].
Several exciting new directions still not covered by existing approaches include the spatially dependent interplay
of signaling networks and gene regulatory networks, the correlation of cell–cell communication inferred from
different molecular modalities in spatial multiomics, and the incorporation of 3D neighborhood information of
cells. Further development is also needed to infer cell–cell communication to fully characterize cell function
and spatial cellular organization across a whole tissue [43]. While the rapid development of spatial transcrip-
tomics has provided new opportunities, it also brings additional exciting challenges. One outstanding challenge
of spatial transcriptomics data analysis is the inference of cellular compositions within each spot, which does
not have single-cell resolution and often captures more than one cell type [6]. Accurate integration of spatial
transcriptomics and scRNA-seq data is important for such deconvolution and to further improve the discovery
of cell communication events between cells. Moreover, due to the complicated spatial distribution of cell types

Table 1 Examples studies of cell–cell communication analysis via existing or customized computational approaches
in skin development, injury, disease, cancer and aging Part 2 of 2

Sample Input data Methods Highlights Ref.

Basal cell
carcinoma,
Squamous cell
carcinoma

scRNA-seq
RNAscope, ddPCR
and OPAL multiplex
IHC

STRISH Considerable interaction of IL34–
CSF1R around the areas where the
cancer nests were located in both
cancers

[43]

Skin aging

Young and old
human skin

scRNA-seq CellPhoneDB Aging causes a substantial reduction
in the interactions between dermal
fibroblasts and other skin cells.

[64]

MIBI: multiplexed ion beam imaging; ddPCR: droplet digital PCR; IHC: immune histochemistry.
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in tissues, the determination of the spatial proximity cell types remains challenges. Future work in this direction
will help to improve the inference of spatial-informed cell–cell communication in tissues.

Biological insights gained by cell–cell communication
analysis in tissue development, homeostasis, disease and
aging
Cell–cell communication tools have been successfully applied to a diverse range of biological systems to dissect
mechanisms of cell fate decisions during tissue homeostasis, development and disease [2,3]. Here, we discuss
how cell–cell communication contributes to skin development, wound healing, disease and aging. Examples of
studies were summarized in Table 1.
Skin development requires coordination between different cell types in epidermis and dermis [8]. Cell–cell

communication analysis using scRNA-seq data has increased our understanding of the roles of novel signaling
pathways and cell subpopulations in skin development. For example, CellChat predicts a novel role of Edn3 sig-
naling in stimulating directed migration of melanocytes into placodes during mouse hair follicle formation
[15]. Application of SoptSC to scRNA-seq data of human neonatal epidermis showed distinct cell–cell commu-
nication patterns for heterogeneous basal stem cell subpopulations and basal cell populations as crucial signal-
ing hubs to maintain epidermal communication [53]. CellPhoneDB analysis of scRNA-seq data from fetal
human skin development predicted an active role of double positive αβγδ T cells during fetal skin immune
responses via interactions with other immune cells, including myeloid cells and natural killer cells, and interac-
tions with fibroblasts and endothelial cells [54].
Extensive cell–cell communication occurs between the diverse compartments of the skin in response to

wound healing after skin injury [8,65,66]. Understanding of signaling mechanisms underpinning tissue regen-
eration and repair is critical for wound-healing therapeutics and translation[66]. CellChat analysis of
scRNA-seq data from day 12 mouse skin wound healing showed complicated TGFβ signaling with redundant
ligand sources targeting fibroblasts. On the contrast, Wnt5a was predicted to mediate signaling from fibroblasts
to fibroblasts, endothelial and myeloid, which exhibits a non-redundant network architecture. CellPhoneDB
analysis of mouse scRNA-seq data predicted ephrin signaling-mediated epithelial-mesenchymal crosstalk that
enables mesenchymal competence for regeneration in skin wound healing[55]. Another application of
CellPhoneDB to skin injury revealed that αvβ8 expression in skin Tregs helps to activate TGF-β in neighboring
keratinocytes, which act directly on epithelial cells to promote CXCL5 production and neutrophil recruitment,
suggesting that αvβ8-expressing Tregs contributes to innate inflammation and delayed epidermal repair after
inducing skin injury [56]. In addition, NicheNet analysis was applied to identify the signals driving the
response of OTULIN-deficient keratinocytes to inflammation [57]. NicheNet [32] predicted that cytokine IL-1β
and chemokine MCP-1 production by infiltrating immune cells contributes to the inflammatory skin pheno-
type in OTULIN-deficient mice [57].
Acne, atopic dermatitis (AD), psoriasis and rosacea are the four most common skin diseases. Combining

scRNA-seq with cell–cell communication analysis have provided critical insights into the disease pathogenesis
and uncover potential opportunities for therapeutic interventions. Comparison analysis of non-lesional and
lesional human skin from patients with AD using CellChat discovered major signaling changes in response to
disease [15]. CellChat identified ligand–receptor pair CCL19–CCR7 as the most significant signaling that was
specifically active in lesional skin, contributing to the communication from Inflammatory fibroblasts to
Inflammatory dendritic cells. To investigate if F13A1+ macrophage subset and SNCG+ and ACKR1+ vascular
endothelial cells were interacting with each other or other immune cells to coordinate leukocyte migration,
CellPhoneDB was applied to assess cell–cell interactions in healthy, AD and psoriasis skin. CellPhoneDB pre-
dicted a significant enrichment for ACKR1 on VE3 to interact with CXCL8 (IL-8) on Mac2 and an enhanced
interaction between VE3 and Mac2 with lymphocytes in AD and psoriasis compared with healthy skin, sup-
porting a role for these cells in lymphocyte recruitment into inflamed skin [58]. Customized ligand–receptor
analyses of scRNA-seq data collected from psoriatic and vitiligo skin have also identified signaling changes spe-
cific to diseases. For example, ligand–receptor analysis revealed the regulatory potential from resident epider-
mal/mesenchymal cells to dendritic cells during psoriasis [59]. More recently, cell–cell communication analysis
of scRNA-seq of human vitiligo revealed that cell type–specific signaling programs and CCR5–CCL5 signaling
was critical to effector CD8+ T cell and Treg function in vitiligo, implying the potential role of chemokine cir-
cuits in driving lymphocyte localization [60].
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Skin cancer, including melanoma, basal cell carcinoma, and squamous cell carcinoma, is a disease in which
malignant (cancer) cells form in the tissues of the skin. The advance understanding of known and new ligand–
receptor pairs in the context of tumor-immune cell interaction within a tumor is extremely important for the
further development of immunotherapies [67]. The tumor microenvironment (TME) comprises non-immune
cells such as fibroblasts, blood and lymphatic endothelial cells, and numerous immune populations, aiding the
growth and development of malignant cells. Application of CellChat to scRNA-seq data of esophageal squa-
mous cell carcinoma (ESCC) highlighted the role of TNS1high fibroblasts in TME, in particular the interaction
with cytotoxic T cells. Of note, TNS1high fibroblasts was associated with immune exclusion phenotype and
poor prognosis of ESCC patients [61]. CellPhoneDB was applied to systematically study interactions within the
TME in murine melanoma and identified stromal-immune interactions, such as C3–C3AR1, CXCL12–CXCR4
and CSF1–CSFR1 with macrophages as primary target [62]. Recently, cell–cell communication analysis has
also been applied to spatial imaging data in skin cancer. A recent study revealed an immunosuppressive
tumour-specific keratinocyte (TSK) subpopulation as a hub for intercellular communication by integrating
scRNA-seq and spatial transcriptomics data in human squamous cell carcinoma [63]. NicheNet analysis pre-
dicted this subpopulation modulates TME-specific cell-type signatures at the leading edge and revealed TSK
signaling to cancer-associated fibroblasts (CAFs) via MMP9–LRP1 and TNC–SDC1 and to endothelial cells via
PGF–FLT1, PGF–NRP2, and EFNB1–EPHB4. Applying the computational pipeline STRISH to two types of
skin cancer — basal cell carcinoma and squamous cell carcinoma — revealed considerable interaction of IL34–
CSF1R around the areas where the cancer nests were located in both cancers, particularly in the epidermal
compartments [43].
Altered intercellular communication is one of the nine candidate hallmarks of aging [68], which can directly

affect tissue homeostasis and function. Single-cell sequencing allows us to comprehensive investigate altered
cell–cell communication underlying aging processes, and offers novel therapeutic concepts to combat
aging-associated skin diseases [69]. By comparing the inferred cell–cell communication in the young and old
human skin using CellPhoneDB, one study showed that aging causes a substantial reduction in the interactions
between dermal fibroblasts and other skin cells, including undifferentiated keratinocytes at the
dermal-epidermal junction [64]. We anticipate there is growing insight into the roles of cell–cell communica-
tion in the aging process with the advance of various single-cell sequencing and imaging technologies.

Benchmarking
The importance of cell–cell communication in tissue development and homeostasis has sparked a growing
number of computational methods for inferring cell–cell communication from scRNA-seq data or spatial tran-
scriptomics data. Recently systematical comparisons of ligand–receptor interaction resources and computational
tools observed uneven coverage in terms of pathways and biological categories among the resources and
varying predictions among the tools [14], making it difficult for researchers to choose an appropriate resource
and method. Since computational inference is based on prior knowledge of ligand–receptor interactions, a
unified resource similar to ominPath [24], with comprehensive literature-supported ligand–receptor interac-
tions, is highly needed. Moreover, these issues also pose an urgent need to comprehensively benchmark the
accuracy and robustness of each method using datasets with different biological variabilities, tissues, protocols,
and platforms. While few studies have attempted to generate simulated datasets with ground truth against
which various methods could be benchmarked [41,42,51], simulation of cell–cell communication with spatial
information remains challenging due to the inherent complexity and redundancy of signaling mechanisms
across multicellular systems. Existing case studies usually validate and compare inference results based on find-
ings from biological experiments [15], bulk tissue data [20] or spatial transcriptomics data [34]. Therefore, we
first need to establish a methodological framework that enables the simulation of cell–cell communication in
different scenarios. Second, a curation of ground truth datasets would faithfully reflect differences in the per-
formance of methods while avoiding the shortcomings of simulated data. Third, a set of quantitative metrics
needs to be established that can better reflect the accuracy and robustness of methods for inferring cell–cell
communication. Finally, a framework like ligrec_decoupler [14] should be established to facilitate a comparative
assessment of methods and to provide a unified interface for users to applying diverse methods to their own
data. We anticipate that the growing number of datasets from spatial transcriptomics will greatly boost the
benchmarking of these computational tools.
Investigation of each method’s advantages and limitations will provide practical guidelines for users. Since

cell–cell communication often relies on multi-subunit protein complexes [70], methods like CellChat,
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CellPhoneDB and ICELLNET, which take into account multimeric ligand–receptor complexes, could poten-
tially better prioritize biologically relevant interactions. However, modeling multimeric structure of ligand–
receptor complexes is challenging due to possible ‘zero expression’ of subunits caused by dropout events in
scRNA-seq data. Fortunately, dropouts are unlikely to affect strong signals predicted by these methods because
dropouts commonly happen for genes with low expression [71–73]. Integrating other type of data such as
single-cell proteomics [74] and CITE-seq data [75] could further improve the modeling accuracy. In addition,
users can also choose methods based on the unique characteristics and capabilities of these methods, as shown
in Figure 1. We believe that comprehensive benchmarking will provide better guidance for users and accelerate
newly developed methods for the community.

Outlook
Single-cell sequencing and imaging technologies are rapidly developing, in particular for examining the spatial
transcriptome [3,6]. While cell–cell communication analysis has advanced considerably in recent years,
enhanced computational approaches are clearly warranted. First, because of the spatial restrictions inherent to
ligand diffusivity in juxtracrine and paracrine communication, consideration of spatial information is critical
for cell–cell communication inference. Gene regulatory networks often drive cell fate and decision-making;
however, most of the existing cell–cell communication inference methods do not consider the downstream
response within the target cells. Integrating scRNA-seq data with spatial transcriptomics as well as gene regula-
tory networks offers a unique opportunity to study the spatial patterns of cell–cell communication and gene
regulatory networks as well as to investigate how cell–cell communication affects cell-specific signaling net-
works within the context of a tissue. Second, sophisticated methods like Tensor-cell2cell [42] are highly needed
to discern context-shared and -specific signaling patterns across conditions. Particularly, how to extract the bio-
logically relevant signaling while removing the batch effects remains challenging [76]. Third, newly emerging
experimental modalities from single-cell multi-omics such as single-cell proteomics and epigenomics [77–79]
can further improve inference and our understanding of cell–cell communication, given that cell signaling
occurs at the protein level instead of the gene level. Fourth, developing new computational methods that can
incorporate phenotype and clinical information may be important to identify intracellular communication
driving disease progression and enhance the predictive prognostic power of cell–cell communication. Last but
not least, combining cell–cell communication analysis and mechanism-based systems biology modeling will
likely deepen our understanding of the role of environmental signals in cell lineage fate decisions.

Perspectives
• Cell–cell communication orchestrates tissue development, homeostasis and disease.

Single-cell sequencing and imaging technologies provide a unique opportunity to study cell–
cell communication systematically and comprehensively.

• Integrating single-cell genomics and spatial transcriptomics data will greatly increase our
understanding of the roles of cell–cell communication and cell-based interceptive medicine.

• Linking phenotype and clinical information with cell–cell communication is important for identi-
fying signaling mechanisms driving cell fate decisions and disease pathogenesis and enhan-
cing the predictive prognostic power of cell–cell communication.
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