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The Lands Pathway is a fundamental biochemical process named for its discovery by
William EM Lands and revealed in a series of seminal papers published in the Journal of
Biological Chemistry between 1958–65. It describes the selective placement in phospho-
lipids of acyl chains, by phospholipid acyltransferases. This pathway has formed a core
component of our knowledge of phospholipid and also diglyceride metabolism in mam-
malian tissues for over 60 years now. Our understanding of how the Lands pathways are
enzymatically mediated via large families of related gene products that display both sub-
strate and tissue specificity has grown exponentially since. Recent studies building on
this are starting to reveal key roles for the Lands pathway in specific scenarios, in particu-
lar inflammation, immunity and inflammation. This review will cover the Lands cycle from
historical perspectives first, then present new information on how this important cycle
forms a central regulatory node connecting fatty acyl and phospholipid metabolism and
how its altered regulation may present new opportunities for therapeutic intervention in
human disease.

Discovery of Lands pathway by Bill Lands and
colleagues
William (Bill) EM Lands was a Biological Chemist born in 1930 in Chillilcothe, Missouri. Following a
BS in Chemistry in Michigan, a PhD in Biological Chemistry from Illinois, and one year as Post Doc
Fellow in California Institute of Technology, he spent 25 years on faculty at University of Michigan,
starting around 1956. It was during this time that his seminal work on lipid metabolism included his
discovery of the Lands Pathway, ultimately named after his own work. This pathway describes how
selective fatty acyl (FA) placement is accomplished by lipid acyltransferases and phospholipases
during recycling of glycerophospholipids (GPL), or more simply phospholipids (PL). It was uncovered
in a series of seminal articles, reproduced in part during the centenary of JBC in 2005 [1–6]. At the
time of Lands’ first publication on this topic, Kennedy and co-workers had proposed that lecithins (a
generic term for PL) and triacylglycerides (TAG) were made from common diacylglyceride (DAG)
precursors, based on experiments using isolated mitochondria [7, 8]. Lands reasoned that if this were
always true, that radioisotope labelling using 14C-acetate and 14C-glycerol should produce a predicable
ratio of incorporation in both TAGs and PLs. However, this turned out not to be the case, with a far
higher level of incorporation of 14C in the FA compartment of the PL pool than expected. This led
him to propose that the formation of lysoPL from PL was not simply a degradative end reaction for
PL metabolism, but that a cycle existed where by exchange of FA can take place, via a lysoPL inter-
mediate [1]. Thus, the diglyceride unit of PLs was proposed to be metabolically different from TAGs.
Lands went on to further characterise this phenomenon by showing that enzymatic acylation of
lysoPL (first generated through the action of phospholipases) occurred in rat liver microsomes [2]. He
characterised the positional specificity of this acylation process [4], and followed this by showing that
diacylPE could be generated from lysoPE, having previously shown this held true for PC biosynthesis

Version of Record published:
28 February 2022

Received: 2 January 2022
Revised: 15 February 2022
Accepted: 15 February 2022

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 1

Biochemical Society Transactions (2022) 50 1–11
https://doi.org/10.1042/BST20210579

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/50/1/1/930593/bst-2021-0579c.pdf by guest on 05 April 2024

https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1042/BST20210579&domain=pdf&date_stamp=2022-02-28


[5]. Next, he showed that rat liver enzymes readily acylate glycero-3-phosphate in a way that doesn’t discrimin-
ate acyl positioning, unlike acylation of monoacylglycerides [9], that acyltransferase activities were tissue select-
ive, and proposed this was due to the different acyl coenzymeA : phospholipid acyltransferase activities
observed [3]. In some of these studies, Lands was also characterising the different acyl transferases in his
laboratory applying spectrophotometric assays to protein fractions purified from liver microsomes [4, 5]. He
differentiated the enzymes that acted on 1-acyl versus 2-acylphosphoglycerides by their sensitivity to inhibition
by long chain thiol esters.
These seminal studies set the groundwork for our understanding of PL metabolism, and were then followed

by several decades research charactering the large families of acyl transferases that mediate these reactions using
FA-CoA ester and lysoPL substrates. Notably, the Lands cycle doesn’t exist in isolation, but alongside other bio-
synthetic pathways such as Kennedy Pathway or CDP-choline pathway, identified in 1956 by Eugene Kennedy
as the primary pathway for PC biosynthesis [8]. For an excellent summary of PL biosynthesis and remodelling
pathways including Lands and Kennedy Pathways, see The LipidWeb, by Bill Christie [10]. Overall, the import-
ance of the Lands Pathway lies in the fact that this process is responsible for the extensive remodelling that
determines the FA composition and positional specificity in cellular and tissue PL pools. Ultimately this com-
plexity is defined and maintained by the tissue expression pattern of proteins that show strong specificity for
particular FA and PL headgroups as outlined below.

The enzymatic transformations that support the Lands
pathway
While the reaction of the Lands Pathway may appear relatively straightforward, comprising the esterification of
two substrates to form a single product, in reality this is far more complex with the different gene products
showing a high level of specificity for particular FAs and PLs, leading to a hugely complex pattern of tissue spe-
cific PL composition. Furthermore, there are several mechanisms by which this can be accomplished, as out-
lined below. A summary figure of the Pathway is shown in Figure 1.
By the late 1990’s, methods that allowed the separation and analysis of molecular species of PL had provided

details on tissue specific composition, primarily in macrophages and liver ([11–17]). Studies had uncovered

Figure 1. The Lands Pathway showing remodelling of PC fatty acyl composition.

The cycle showing hydrolysis and re-esterification is shown as a summary.
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high proportions of ether-containing PLs in white blood cells including macrophages [18], and the potent
signalling mediator, platelet activating factor, an unusual ether PC, generated via the Lands cycle was
known [11, 18, 19]. It had been recognised that the primary route of arachidonate (20 : 4) introduction into
PL was via the Lands cycle and that most PC and PE in liver are diacyl species [18], which contain large
amounts of this FA at the Sn2 position [11, 14, 16]. The molecular compositions of phosphatidylinositol (PI)
and phosphatidylserine (PS), also containing primarily stearate (18 : 0) and 20 : 4 were known [11]. The eluci-
dation of PL biosynthetic pathways proceeded in parallel to the study of the Lands Pathway, and it became
clear that PL recycling could occur via at least four sets of enzymatic transformations. These included (i)
Acyl-CoA : lysoPL acyltransferases and phospholipaseA2 (PLA2), (ii) CoA-dependent transacylation reactions,
(iii) lysophospholipase/transacylase and (iv) CoA-independent mechanisms, which use FA esterified at the sn2
position of a diacylPL as substrate (Figure 2). For a comprehensive review of the state of the art at that time
see Yamashita [11]. These different processes are exquisitely controlled in a tissue and cell dependent manner.
For example, the Acyl-CoA : lysoPL acyltransferase pathway is widely distributed and most often located on
microsomal and plasma membranes. Here, a FA-CoA is esterified into either Sn1 or Sn2 of a lysoPL.
Specificity of this reaction for saturated FA at Sn1 and unsaturated FA at Sn2 was shown [3]. Along with
Lands, research by Okuyama, Kano and Ohno in Japan elucidated substrate specificity in vitro and in vivo for
PC [20–22]. Complimentary studies on PI and PS were also undertaken [23–25]. Aside from mapping out
composition, seminal studies demonstrated that phospholipaseA2 activities play important roles in regulating
release of 20 : 4 in cells such as platelets and macrophages in response to calcium ionophore. The second
pathway, CoA-dependent transacylation, involves transfer of a FA from a PL, into a lysoPL, via a CoA inter-
mediate. This process has been proposed to not involve free FA formation from PL but a direct formation of
FA-CoA from PL metabolism. Many studies on this pathway were undertaken from 1979–1995, and are refer-
enced in [11]. The third pathway involves lysophospholipases which have been shown to catalyse transacyla-
tion between two lysoPC, in which one is transferred a FA, to become a PC moiety. Some reports have shown
that PLA2 can have acyltransferase and transacylase activities, and maybe involved in PL remodelling [26].
Last, CoA-independent transacylation was shown in cells that contain high levels of ether PL. Here, FA are
transacylated from diacyl PL to several different lysoPL in the absence of any cofactors. Generally, this process
favours longer chain PUFA [27–31].
While great strides had been made in elucidation of biochemical processes regulating PL recycling, at that

time, the identities of the enzymes themselves was limited. Protein purification by detergent solubilisation,
chromatography and SDS–polyacrylamide gel electrophoresis had been applied to the analysis of PC and PI
acyltransferases in bovine heart [11, 32, 33], but the identities of other proteins were still largely unknown. The
molecular biology revolution was only beginning, and researchers looked forward to the application of cDNA
cloning approaches which would help identify the key genes and their products involved in PL remodelling.

Elucidating the enzymes involved using molecular biology
approaches
During the 2000’s, following the sequencing of genomes and once candidate genes were identified, many pro-
ducts of cDNAs were tested for enzymatic function relating to phospholipid remodelling. Enzymes that were
called lysophospholipid acyltransferases (LPLATs) were suggested to be organised into two main families of
proteins, then termed lysophosphatidic acid acyltransferases (LPAATs) and membrane bound
O-acyltransferases (MBOATs) [34–46]. For readers interested in a comprehensive recent review of the area
including full descriptions of studies that characterised cloned proteins in vitro please see [47]. However, the
naming conventions that were used to refer to LPLATs over the decades created significant confusion in the
field. Multiple names have been used for the same enzyme (e.g. based on their substrate preferences), or in
other cases, the same name was used for different gene products. To address this, a new nomenclature was
recently proposed, based on designating all the enzymes LPLATx, where x denotes the order of discovery, and
no information on polar headgroup or substrate is provided. The proteins are then assigned into either
MBOAT or AGPAT families [47]. Notably, most enzymes previously termed LPAAT are members of the
AGPAT family. In this new system, LPLATs comprise 11 of the 15 members of the AGPAT family and 4 of the
11 members of the MBOAT family, with additional members of both families encoding proteins that are
involved in other lipid metabolic processes, such as protein palmitoylation or glycerolipid biosynthesis [47].

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 3

Biochemical Society Transactions (2022) 50 1–11
https://doi.org/10.1042/BST20210579

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/50/1/1/930593/bst-2021-0579c.pdf by guest on 05 April 2024

https://creativecommons.org/licenses/by/4.0/


AGPAT family
AGPAT designated LPLATx members are named LPLAT1-10 and 9b, based on the new nomenclature. They
have four conserved motifs which based on AlphaFold predictions are believed to define their enzyme active
site and recognition of substrate. LPLAT8 and 9 are considered monotopic membrane proteins, with LPLAT8–
10 predicted to be anchored via N-terminal helices. These LPLATs are widely expressed in mammalian tissues,
and are mainly localised to the ER membrane, although some are also found on Golgi, mitochondrial, nuclear
membrane or lipid droplets [47]. As examples of AGPAT family members, the first cloned enzyme shown to

Figure 2. The four enzymatic pathways that drive PL remodelling.

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).4

Biochemical Society Transactions (2022) 50 1–11
https://doi.org/10.1042/BST20210579

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/50/1/1/930593/bst-2021-0579c.pdf by guest on 05 April 2024

https://creativecommons.org/licenses/by/4.0/


generate PC-containing 20:4 was LPLAT9 (LPCAT2) while a reduction in PC-20:4 was shown to occur in
LPLAT12 (LPCAT3/MBOAT5)-deficient mice [48–50]. The cloning of LPLAT12 was first reported in 2008 in
two closely published studies [46, 51]. See later for a description of the role of LPLAT8 and 9 in inflammatory
processes through their role in generation of platelet activating factor (PAF).

MBOATs
MBOATs with LPLATx activity comprise LPLATs11–14, and they share four conserved motifs, that are distinct
to those found in AGPAT family members. These LPLATs have several transmembrane domains, and a con-
served histidine suggested to be the active site residue [52]. There are three overall categories of MBOAT based
on their enzymatic function, with only one catalysing PL remodelling (LPLATx group). Other MBOATs
include ACAT(or SOAT)1,2 and DGAT1 which are involved in neutral lipid biosynthesis, and a group (HHAT,
Porcupine, MBOAT4 HHATL) which acylate proteins/peptides. The biochemical reactions are summarised in
[53]. Relating to the characterisation of these proteins, cloned enzymes were originally tested for activity using
a radiochemical approach, with a single FA-CoA and a single lysoPL [54]. Due to this, previously, the proteins
were named by the PL headgroup substrate that is acylated, e.g. LPEAT acylates lysoPE, while LPCAT acylates
lysoPC. With the advent of mass spectrometry benchtop instruments, that could be applied to lipidomics,
newer assays that allowed choices of multiple FA-CoA esters and lysoPLs could be compared with determine
individual substrate specificities [41, 55]. This revealed that single enzymes can often acylate more than one PL
headgroup. Thus to reduce confusion, the LPLATx members of the MBOAT family are now all simplified to
LPLATs [47]. The lipidomics approach was extended to longer chain PUFA-CoA in a study from Murphy in
2005, which revealed the presence of many LPLAT isoforms in RAW macrophage microsomes [34]. A review
on LPLATs and their generation of membrane diversity from Shindou and Shimizu is published here [56].
Beyond lysoPL acyltransferases, when PL recycling involves a fatty acyl-CoA, other enzymes are involved.

These include phospholipases (PLA1, PLA2), and also Co-A ligases, which themselves also comprise large fam-
ilies of structurally related proteins showing a high level of tissue specificity and differential regulation of gene
expression. First, by hydrolysing FA from a PL, phospholipases provide the substrate for acyl-CoA formation.
Human PLA2 enzymes which cleave FA at Sn2 are termed Groups I-VII, X and XII, with several having
numerous members. These groups comprise many structurally related proteins expressed by diverse cell types,
with some showing calcium sensitivity, while others are secretory forms. Many are actively involved in provid-
ing FA substrate for eicosanoid and prostaglandin biosynthesis, as well as PL recycling. PLA1 on the other
hand, cleaves FA at Sn1. The best known, PLA1A removes FA from PS, generating lysoPS and is secreted from
human platelets [57]. A full description of these is beyond the scope of this review.
The generation of fatty acyl-CoAs is catalysed by a large family of enzymes, called acyl-CoA synthetases

(ACS). There are ∼26 mammalian ACS isoforms, which differ in their preference for FA substrates based on
chain length [58, 59]. The most relevant for Lands pathway, are the 11 which metabolise FA of between 12–24
carbons, termed long chain acyl-CoA synthetases (ACSL) and very long chain acyl-CoA synthetases (ACSVL),
which are also called fatty acid transport proteins (FATP). Five ACSLs metabolise FA between 12–20 carbons,
called ACSL1,3,4,5,6. These are distinguished by their tissue and subcellular distribution, FA chain length pre-
ferences [60]. ACSVLs comprise six members, called ACSVL 1–6, and they can acylate FAs of up to 24 carbons
in chain length [61]. These enzymes not only support acyl-CoA dependent Lands Pathway PL recycling, but
also feed in CoA substrates into a huge range of activities, including biosynthesis of glycerides, sterol esters,
retinal esters biosynthesis, as well as FA β-oxidation, elongation and desaturation, and protein acylation. See
here for two comprehensive reviews of these enzymes, their biochemistry and biology [60, 62].

The participation of Lands pathway in development,
immunity and inflammation
Although the Lands pathway was discovered decades ago, for a long time it was mainly studied from the point
of view of its underpinning biochemical mechanisms. More recent research is shedding light on key roles of
this fundamental cycle in human health and disease, particularly in development and innate immunity. Indeed,
disruption of metabolism of lysoPL via Lands and closely related pathways is associated with several diseases,
such as atherosclerosis, vascular dementia and Alzheimer’s disease [63–67].
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Development
Studies using knockout mice have revealed underpinning roles of MBOAT family members in biology. The lack of
LPLAT11 (MBOAT7) in mice, which is specific for lysoPI, and prefers 20:4 as FA substrate, leads to disordered
cortical lamination and delayed neuron migration, and novel loss of function mutations were associated with intel-
lectual disability [68, 69]. Mice lacking MBOATs 1,2 and 5 (LPLAT14,13 and 12 respectively), are available from
Jackson Laboratories and are reported to have phenotypic alterations that include: behaviour/neurological
(LPLAT14), behavioural, growth, hematopoietic, immune and nervous alterations (LPLAT13) and digestive,
growth, metabolic, liver and ageing (LPLAT12) (http://www.informatics.jax.org/). In relation to liver disease, several
studies have seen that LPLAT11 (MBOAT7) mutations are associated with development and severity of non-
alcoholic fatty liver disease (NAFLD) [70–72], while mice selectively lacking liver LPLAT12 (MBOAT5) show
many hepatic alterations including development of steatosis on a chow diet [50] (http://www.informatics.jax.org/
diseasePortal/genoCluster/view/57 246). Along with this, mice globally lacking MBOAT5 die soon after birth and
also show significant alterations in liver glyceride levels [49, 50]. To date, the detailed mechanistic reasons for these
phenotypes are not fully characterised. In a final example, studies using mice show that LPLAT8 is a major source
of lung surfactant PC, and that its genetic deficiency leads to respiratory dysfunction [73, 74].

Innate immunity
A relatively recent finding has been the involvement of Lands Pathway enzymes in the generation of oxygenated
PL species, following agonist activation of circulating blood cells such as platelets and neutrophils [75]. As one
example, thrombin activation of platelets causes rapid activation of phospholipase A2, oxygenation of PUFA
such as 20 : 4 to form various products, followed by their acyl-CoA-dependent esterification into lysoPL to
form relatively abundant oxygenated PL [76, 77]. In platelets, the most predominant of these products, termed
enzymatically-oxidised PL (eoxPL) to distinguish them from well-known oxidised PL (oxPL), are PE or PC
molecular species that contain 12S-hydroxyeicosatetraenoic acid (HETE) which has been generated via
12-lipoxygenase (LOX). These lipids are formed rapidly on cell activation, in the same timescale as formation
of free oxylipins, suggesting that the enzyme activities are tightly coupled. Oxylipin-containing PL can also be
generated by macrophages, although in the case of 15-LOX in humans or 12/15-LOX in mice, this generally
involves direct PL oxidation rather than a Lands pathway process [76, 78, 79]. However, supplementation of
RAW macrophages with exogenous free HETE, or HETE-esterified to cholesterol can result in a slower rate of
HETE-PL formation, via fatty acyl-CoA intermediates, over a period of a few hours [80, 81]. A recent study
showed that esterification via Lands Pathway can mediate removal of large amounts of 12-HETE by RAW
macrophages in vitro [81].
eoxPL formation appears to be a central part of innate immunity, since the cells that generate them are all

essential to our immediate response to acute injury and trauma. Platelets, neutrophils, monocytes and eosino-
phils all form eoxPL acutely following agonist activation, and recent studies have shown that these lipids may
play key roles in the innate immune response itself, reviewed in [75]. EoxPL, in contrast with oxylipins, remain
cell associated following their synthesis. This results in sufficient amounts present in cell membranes to have an
impact on protein association. In this regard, a role for eoxPL in coagulation has been demonstrated in vitro
and in vivo, where the calcium dependent association of factors with PS is significantly enhanced by the pres-
ence of HETE-PLs in the membrane itself [82, 83]. Here, it is proposed that the electronegative -OH group on
the eoxPL push the membrane apart, facilitating interactions of calcium ions with the PS headgroup, and
enhancing the ability of coagulation factors to associate with the plasma membrane of platelets or eosinophils.
Mice lacking either 12-LOX or 12/15-LOX both show a bleeding disorder and generate smaller thrombi on
challenge, as well as being resistant to inflammatory vascular disease such as atherosclerosis and abdominal
aortic aneurysm [84–88]. The most abundant eoxPL are HETE-containing forms, followed by those containing
monohydroxy-FA from other PUFA [89]. This is most likely due to the fact that these are quantitatively the
most abundant oxylipins generated during blood clotting. However, using LC–MS/MS, ∼100 individual species
could be detected on platelet activation, with many containing multiple oxygenations, but only so far being par-
tially structurally characterised [89]. A major challenge in studying these lipids is the lack of synthetic stan-
dards, with only a small number being commercially available, as well as the significant structural complexity
of products formed. The specific MBOATs/ACSLs specifically involved in formation of eoxPL in immune cells
are so far uncharacterised. A study by Klett et al. demonstrated that several ACSLs can recognise oxygenated
PUFA in vitro, using recombinant enzymes [90].
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Formation and metabolism of lysoPL
Aside from their role as substrates for PL recycling, lysoPL are bioactive lipids that signal through interacting
with G protein coupled receptors [91–93]. They also appear to alter membrane properties and interact directly
with proteins [66, 94–96]. They have recognised roles in inflammatory disease, cancer and many other condi-
tions and thus, regulation of their levels via enzymatic metabolism is critical. LysoPL directly promote
Ras-mediated activation of MAPK, cell-cycle progression and differentiation and their plasma concentrations
are high, ∼200 mM. The Lands Pathway is a major source of lysoPL, and its removal, although in many cells,
following formation of lysoPL, they are mainly removed by lysophospholipases. In this regard, a recent study
by Marnett characterised the substrate specificity of lysophospholipases in murine neuroblastoma [97].

LPLAT8 and 9 (LPCAT1 and 2): roles in inflammation and cancer
PAF is an unusual phosphatidylcholine species which is characterised by a plasmalogen bond at Sn1 and an
acetate bound at Sn2. Several studies have shown an essential role for two LPLAT isoforms in regulating its for-
mation, namely LPLAT8 and 9, formerly known as LPCAT1 and 2 respectively. LPLAT8 was proposed to be
involved in formation of noninflammatory PAF [98], while LPLAT9 is known to acylate acetic acid (C2:0) into
lyso-PAF, to generate PAF [48, 99], involved in inflammation. While LPLAT8 is considered constitutively
expressed, LPLAT9 is activated by phosphorylation in response to stimuli such as lipopolysaccharide, which is
also capable of inducing it in macrophages. LPLAT9 has a proposed role in regulating neuropathic pain via
PAF production [100] and a proposed role in IgE overproduction in allergy [101]. Both LPLAT8 and 9 have
several reported roles in cancer progression and resistance to chemotherapy [102–106]. For more detail, please
see review [47].

Conclusion
The Lands Pathway has been known about since the end of the 1950’s, when it was first noted by Bill Lands
that a distinct metabolic pathway for PL recycling existed. This is one of the key processes by which membrane
lipid composition is controlled across tissues and cells. Since then, our knowledge of the function and import-
ance of the enzymes and products of this pathway has grown significantly and study of the role of lysoPL them-
selves in health and disease, and novel oxygenated PLs generated by this cycle is a major focus of ongoing
research. With the advent of new generation LC/MS/MS methods, revisiting Lands pathway enzyme specificities
in complex tissues in health and disease would be timely, since older studies mainly characterised their bio-
chemistry using cloned enzymes. Currently in most studies, only existing levels of lipids are measured, with no
analysis of their rapid dynamics of formation and degradation. This is a major disadvantage of current
methods, and one example of an approach that addresses this gap is shown here in the case of a time resolved
analysis of hepatocyte glyceride metabolism [107]. One topical area where their contribution maybe understud-
ied and is of likely importance is in the replication of enveloped viruses, such as SARS, MERS, influenza, HIV
and many others. Another area that is ripe for development is flux analysis. It is well known that viral infection
leads to the exploitation of host cell lipids and their synthetic machinery, to support the PL biosynthesis
needed for virus assembly and egress (referenced in [108]). The exact role of Lands Pathway in these events
deserves study since it may represent a target for anti-viral strategies.

Perspectives
• The Lands Pathway is a fundamental underpinning biochemical process, first elucidated in the

1950’s.

• It is required for membrane biogenesis, and also formation of bioactive lipid mediators, and
controlled in a cell and tissue dependent manner by numerous related gene products.

• New appreciation of the Lands Pathway in cell biology and immunology is being realised
through lipidomics studies, and future directions will reveal mechanistic insights into the
detailed roles of this cycle in human health and disease.
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