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Pore-forming proteins (PFPs) are a broad class of molecules that comprise various fam-
ilies, structural folds, and assembly pathways. In nature, PFPs are most often deployed
by their host organisms to defend against other organisms. In humans, this is apparent in
the immune system, where several immune effectors possess pore-forming activity.
Furthermore, applications of PFPs are found in next-generation low-cost DNA sequen-
cing, agricultural crop protection, pest control, and biosensing. The advent of cryoEM
has propelled the field forward. Nevertheless, significant challenges and knowledge-gaps
remain. Overcoming these challenges is particularly important for the development of
custom, purpose-engineered PFPs with novel or desired properties. Emerging single-mol-
ecule techniques and methods are helping to address these unanswered questions. Here
we review the current challenges, problems, and approaches to studying PFPs.

Introduction
Pore-forming proteins (PFPs) represent a highly diverse and growing class of molecules identified in
all kingdoms of life (Figure 1). Examples include the MACPF/CDC, aerolysin, ClyA, and colicin fam-
ilies, to name a few. PFPs are particularly remarkable in that they transition from a soluble molecule
into an integral transmembrane protein. In nature, PFPs function to target and perforate lipid bilayers,
often resulting in cell death.
In a typical scenario, a PFP can discriminately bind to a target, whereupon enormous conform-

ational changes take place to insert amphipathic regions into the target bilayer (Figure 1a). These
structural changes are often accompanied or preceded by oligomerisation. After assembling into
homo- or hetero-oligomers, the inserted amphipathic regions define an aqueous channel or pore. The
specific mechanism of pore insertion is highly divergent and not shared by all PFPs. In general, PFPs
bind to the membrane, oligomerise, and then insert into the bilayer. However, these steps can occur
in varying orders across the different PFP families (Figure 1b).
The function of a PFP is frequently accomplished via a simple arrangement of a receptor-binding

domain (RBD) and a pore-forming domain (PFD), although multi-component systems also exist [1–
4] (Figure 1a). The RBD can be vastly different and may target specific lipid compositions, protein
targets, or even glycans. The PFD is equally diverse and fulfils the role of membrane insertion and
often oligomerisation. Once activated, the PFD is capable of completely transitioning from one topo-
logical fold to a different one (Figure 1c). The final pore lumen can be as small as a few nanometres
(aerolysin) to as large as 50 nm (some CDCs), or larger if multiple arcs conglomerate together.
Broadly, PFPs accomplish biological roles in cell signalling [5–7], programmed cell death [8–10],

killing of other cells and organisms [11,12], defence, development [13,14], delivery of effector mole-
cules [15–18], as well as providing a means of digestion. The most obvious function of PFPs — cell
killing — is achieved by disrupting the membrane bilayer, resulting in either osmotic shock or diffu-
sion of other effector molecules between membrane compartments. Conversely, cellular signalling and
developmental roles are less well understood, representing active areas of research. In lower organisms,
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PFPs enable bacteria to fight for resources by killing competing species, while in humans, pore-forming
immune effectors combat bacterial infections or trigger cell–cell signalling events by damaging cellular mem-
branes [6,19]. To date, numerous families of PFPs have been identified and reviewed extensively (Figure 1a,c)
[12,20–28].
The conversion from soluble monomer to integral pores of variable diameter and chemical properties makes

PFPs useful in several biotechnology applications. One objective in engineering PFPs is to make tuneable and
controllable gateways for the selective flow of compounds, DNA/RNA, and proteins through membranes. In
this regard, PFPs are showing promise in the laboratory for DNA sequencing [29,30], proteomics [31], and
even compartmentalised biochemical systems [32]. PFPs are also of major interest in industry for their pesticide

Figure 1. Pore-forming proteins are structurally diverse.

(A) Protomers of lysenin (RCSB Protein Data Bank [PDB] ID code 3ZXG), Bacillus thuringiensis Cry1Aa (PDB: 1CIY), aerolysin

(PDB: 3G4N), Fragaceatoxin C (FraC; PDB: 3LIM), perforin (PDB: 3NSJ) and Photorhabdus luminescens Tc holotoxin (TcdA1;

PDB: 6RW6). Motifs/domains responsible for membrane insertion and membrane binding are coloured red and orange,

respectively. (B) Schematic depicting a generic pathway for pore formation into a lipid membrane based on MACPF/CDC

pore-forming systems. Soluble components, typically monomers, bind the membrane. Several monomers subsequently come

together to form oligomers. Oligomeric intermediates undergo a conformational change inserting transmembrane amphipathic

regions into the lipid bilayer, forming an aqueous channel. Some other PFPs systems oligomerise in solution before binding the

bilayer. Membrane penetration may precede oligomerisation in some systems. The stoichiometry of the various intermediates is

highly dependent on the pore-forming system. Additional intermediates (not depicted) may also be present. (C) Pore forms

(volume rendering in UCSF Chimera) of pleurotolysin (PDB: 4V2T), α-haemolysin (PDB: 3M2L), SmhB (PDB: 7A0G) and ClyA

(PDB: 6MRW). Low-pass filtered cryoEM maps of aerolysin (EMDB-8187), lysenin (EMDB-8015) and Photorhabdus luminescens

Tc holotoxin (TcdA1; EMDB-10313). A single protomer from each pore is coloured purple (and orange, for the two-component

system of pleurotolysin). Where applicable, detergent or lipids are coloured yellow. Scale bar is 100 Å for A and C.
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and antimicrobial properties [33–36], while also being proposed as components in targeted drug-delivery strat-
egies [37,38].
Herein, we review the emerging research themes and challenges in the field. We discuss some of the

state-of-the-art techniques being employed to study PFPs and offer a perspective on their contributions in the
future. Lastly, we explore some recent examples of biotechnological developments that employ PFPs for transla-
tional applications.

Current questions and challenges
Over the past decade, our understanding of PFP structure and function has been propelled forward by x-ray
crystallography and cryoEM studies. In comparison, investigations into pathway kinetics, lipid interactions, and
conformational changes of pore formation are relatively rare — representing a major shortcoming in the litera-
ture. Here, we outline some of the current challenges and limitations in our understanding of PFPs.

Identification of conditions for activation
Many novel PFPs have been identified by bioinformatic or high-throughput screening techniques. However,
these methods provide little to no information on the conditions required to activate pore formation.
Consequently, these conditions remain elusive for many well-studied PFPs. Identifying these conditions is non-
trivial and represents a major bottleneck in understanding PFP function — often requiring tedious and labour-
intensive screening on a case-by-case basis. Screening can be further complicated if pore formation is triggered
by a specific sequence of events. For example, various combinations of triggers have been identified, such as
proteolysis [9,10,33,34], changing pH [39–41], receptor binding [17,42–44], encountering lipids of particular
compositions [39,41,45–48], and physical properties of the membrane [49].
In the absence of knowledge about native activation conditions, artificial methods have enabled the study of

PFPs in their pore form. Successful methods include freeze-thaw treatment [17], incubation with detergents
[50], and addition of mild denaturants [51].

Assembly pathways and kinetics
The assembly pathways that culminate in pore formation are highly diverse and underpin fundamental regula-
tory and functional attributes specific to a given PFP [52]. Attempts to characterise events along the assembly
pathway are met with fundamental challenges. Firstly, intermediates are often short-lived and rapidly transition
into different states. Secondly, pore formation is asynchronous, making it difficult to extract mechanistic details
from the population averages provided by ensemble analyses.

In addition to the specific events of assembly, the rates and dynamics of these processes similarly underpin
functional and regulatory properties of PFPs. As such, the kinetics of pore formation is a fundamental and
complex topic [53–57]. Quantification of these properties yields insight into kinetic bottlenecks for therapeutics,
emergent properties of the system, structural and evolutionary constraints of function, and statistical under-
standing of assembly [52–57].

Intermediates of pore formation
Excellent progress has been made in determining representative structures of PFPs in various conformational
states. These include several stable conformations in the upstream and downstream stages of the pore formation
assembly pathway. Notable exceptions include some insecticidal families, such as Cry1 toxins, for which we
lack structures of oligomeric species entirely. In comparison, intermediates of pore formation have proven chal-
lenging to structurally characterise. These include membrane-bound monomers, small oligomeric assemblies
(arcs), early and late prepores, and structures adopted during membrane insertion.
Consequently, studies of intermediate stages of pore formation are rare or require biochemical modifications

to the PFP in order to ‘trap’ and visualise intermediates [18,58–64]. Moreover, these modifications also raise
questions about the validity of the manipulated state, specifically how closely it reflects a true state in nature, if
at all. Furthermore, due to the extensive nature of the rearrangements accompanying pore formation, the
simple ‘start-and-end’ structural snapshots provided by these methods leave much to be inferred. As such,
detailed atomistic descriptions outlining the conformational changes that occur during pore formation are
lacking for many families.
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Lipid properties and biophysics
In addition to being a platform for PFPs to bind and insert into, lipid membranes of different physical proper-
ties can also modulate and regulate the function of PFP systems. Intuitively, different lipid headgroups can
function to specifically bind and anchor a PFP, as observed for several systems [3,39,41,65,66]. A less intuitive
effect on pore formation is that of the physical properties of the bilayer, such as width, density, and fluidity
[67]. Even lipid rafts have been implicated in PFP function [68,69]. These properties manifest from the lipid
packing, phase transition temperature, saturation of the aliphatic regions, and curvature of the bilayer.
It has recently been demonstrated that the activity of lymphocyte perforin is affected by these properties,

with high lipid order and bilayer rigidity negatively regulating function [49]. Furthermore, studies of β-barrel
folding kinetics in lipid bilayers have shown a relationship between certain physical properties (width, curva-
ture, composition, fluidity) and the efficiency of β-barrel formation [70–73]. Lipid physical properties likely
also modulate the kinetics of PFPs, given differences in protein diffusion rates, membrane binding, sequestra-
tion [47], and movement of lipids [74,75] during the formation of a pore.

Emergent (system-level) properties
Emergent properties, also known as collective behaviour, are system-level characteristics that arise from
complex interactions between many constituent parts. These properties are manifest at the system level, but do
not belong to the individual components of the system — ‘the whole is greater than the sum’. These include
ultrastructure, phase transitions, self-assembly and other macroscopic properties. One example, in the context
of PFPs, is the process of self-assembly from monomers into an intricate array of hexagonally arranged pre-
pores, such as the honeycomb arrangement of MPEG1 prepores [39,41].
Understanding and predicting these phenomena is important for designing PFPs systems with desired emer-

gent properties. For example, one might use the honeycomb arrangement of MPEG1 to generate an antimicro-
bial nanosurface for surgical equipment. Such properties are difficult to predict, however, and even more
challenging to design. To achieve these goals, biophysicists require computational and theoretical models based
on knowledge of system kinetics, structure and mechanisms that recapitulate and describe PFP behaviour.

State-of-the-art tools for studying PFPs
Fundamental questions concerning PFP biology can be classified into key research themes, including structural
intermediates, kinetics of pore formation, mode-of-action, PFP-lipid interactions, and translational applications
in biotechnology and medicine. Driving these investigations are a broad set of cutting-edge experimental and
computational techniques (Figures 2, 3). Collectively, these techniques operate within the single-molecule
regime. Here, we cover how several techniques have propelled the field forward in recent years.

Microfluidics
Increasingly, researchers are moving toward high-throughput, parallel, single-molecule based assays that couple
microfluidic systems with state-of-the-art techniques (discussed below). The modular nature of microfluidic
devices enables complex fluidic circuits to be built in a customisable fashion, integrating liposome fabrication
[32,76], protein assays, and small-scale purifications [77] into one (Figure 2a). As such, lab-on-a-chip devices
can be developed for specific low-volume, efficient and reproducible experiments for parallel screening, sample
optimisation, and data acquisition schemes. To date, microfluidic devices have been developed to perform
myriad tasks [76–83]. While only a few studies currently make use of microfluidic or micromanipulation to
specifically study PFPs, their use is growing with future applications in high-throughput lipid screening or
measuring entire assembly pathways.

Membrane mimetics & cryoEM
Membrane mimetic technology has drastically accelerated the study of membrane proteins, in conjunction with
cryoEM. Membrane mimetics, such as liposomes and nanodiscs, preserve the lipid bilayer while forming in
solution (Figure 2b). These offer the select advantage over detergent by acting as a membrane platform upon
which PFPs may assemble [16,17,39,58,59,61,84–86]. Membrane mimetics are particularly valuable for interro-
gating PFP structure in a lipid environment, and as such have been used extensively (Table 1).
Detergents have also been widely used to study pores by cryoEM and x-ray crystallography [50,84,87]. Some

PFP systems spontaneously form prepore and pore oligomers in the presence of detergents [50]. While for
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Table 1 Comparison of various membrane mimetic and substitute technologies Part 1 of 2

TOOL ADVANTAGES/BENEFITS DISADVANTAGES/CHALLENGES EXAMPLES

LIPOSOMES • Closely mimics native
membrane (fluidity, width,
phase transitions)

• Mediates complex assembly
• Diffusion on surface is possible
• Encapsulate dyes, reagents,

etc.
• Compartment forming

(chemical gradients, assays,
etc)

• Easily deposited onto a
surface

• Simple to produce, size is
controllable.

• Instability - prone to burst or aggregate
• Heterogeneous (composition, protein binding,

size)
• Not effective for solubilisation
• Difficult to freeze, requires thick ice and

complicates high-resolution cryoEM reconstruction
(strong incoherent signal)

• Large enough to scatter light
• Screening lipid compositions is low throughput

CryoEM (1–4) AFM
(5,6) SCC (7) LM (8)

NANODISCS

• MSP1D1
• cMSP26
• NW50

• Highly stable
• Can derive lipids native bilayers
• Smaller than liposomes

(reducing ice thickness for
cryoEM studies)

• Stabilisation of hydrophobic
regions (like detergent)

• Mediates complex assembly
• Amenable to further purification
• Genetically encoded allowing

customisation
• Click-chemistry compatible

• Lipids in nanodiscs have altered properties
compared to lipids in cell membranes

• Low surface area (diffusion dependent process)
• Production and purification are labour intensive
• Often requires extensive optimisation
• Poor efficiency of nanodisc formation, not effective

for solubilisation
• Sizes are relatively limited

CryoEM (9–13)

DETERGENT • Simple and convenient means
of solubilisation

• A broad selection with different
chemistries

• Can induce spontaneous
oligomerisation and/or pore
formation

• Amenable to further purification

• Do not provide a surface for assembly
• Detergent micelles are topologically different to

native membranes
• Can introduce structural artefacts
• Protein stability is often an issue
• Lack protein/lipid interactions
• Empty micelles can interfere with cryoEM image

processing

CryoEM (14–20)

AMPHIPOLS • Less likely to destabilise
structure compared to
detergent

• Stable, even when diluted
• Can be chemically modified or

conjugated
• No interference with

light-based experiments

• Does not provide an assembly surface
• Not suitable at acidic pH or in excessive divalent

ions.
• Cannot directly solubilise MPs
• Difficult to synthesis
• Polydisperse

CryoEM (21–24)

SMALPS • Detergent-free solubilisation of
MPs.

• Maintain native lipids after
solubilisation. Useful for
lipidomics.

• Protein-lipids interactions are
retained to a greater extent

• Compatible with further
purification

• Highly stable once SMA disc
forms

• Does not form micelles

• Difficult to synthesise
• Polydisperse sizes
• Native bilayer properties are not preserved.
• Expensive
• Can affect protein purification

CryoEM (25) MS (26)
SCC (27)

Continued
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other PFPs, detergents have been used to extract pores from native membranes or stabilise activated pores in
vitro [41,84,85,87].
Amphipathic polymers, such as amphipols or styrene maleic acid polymers (SMALPs), offer an alternative to

detergents to extract and/or stabilise membrane proteins. While SMALPs have not been used yet to study PFPs,
amphipols have been used to stabilise large oligomeric pores [88]. For the readers’ convenience, we have sum-
marised the advantages and disadvantages of various membrane mimetics and their applications (Table 1).

Time-resolved cryoEM
In general, structural studies provide only a static snapshot (Figure 2b). Recently, new methods in cryoEM
demonstrate the potential for time-resolved measurements and ‘4D reconstructions’. Progress toward this goal
has been made in sample preparation, microscope hardware, data collection, and analysis techniques [79,80,89–97].
The most established example is the development of rapid microfluidic freezing devices, which have enabled

millisecond mixing and halting of biochemical reactions before standard cryoEM imaging [93]. Conversely, a
new cutting-edge approach achieves microsecond temporal increments by devitrifying the specimen for a con-
trolled period in the microscope using a laser pulse (Figure 2c) [90]. During this devitrified period the speci-
men can undergo rapid conformational changes before undergoing re-vitrification. This treatment is followed
by standard cryoEM imaging.
Lastly, modern software can now estimate the conformational landscape from an ensemble of single particles

in some cases [89,94–97]. In this context, trajectories through the conformational landscape reflect temporal
changes of the macromolecule in real space. In this regard, these trajectories can be considered a form of
pseudo-time-resolved analysis. Taken together these techniques provide insight into a new dimension of struc-
ture and function. We anticipate these methods to be valuable in probing short-lived (∼ms–ms) structural
intermediates of PFPs in coming years, especially when combined with machine learning techniques [98,99].

Atomic force microscopy (AFM)
Time-resolved cryoEM is still in its infancy. In comparison, AFM is a mature technique capable of directly
measuring the assembly pathway of a PFP at moderate-to-high spatial and temporal resolutions [67,100]
(Figure 3a). In the past, AFM has been used to provide insight into both the oligomeric state(s) of PFPs and
their dynamics over time, as well as specific details about PFP activation in the context of lipid membranes
[67,100,101]. Indeed, AFM has been used to establish the foundation of mechanistic and structural understand-
ing of various systems, including MACPF/CDCs [53,59,102,103], GSDMs [104], and others [105,106].
Recently, AFM studies have provided both single-molecule kinetics of assembly [53], as well as an under-

standing of bactericidal activity by imaging pore formation on live cells [107,108]. AFM has been especially
useful for studying the interaction of PFPs with lipid bilayers, and particularly the functional impact membrane

Table 1 Comparison of various membrane mimetic and substitute technologies Part 2 of 2

TOOL ADVANTAGES/BENEFITS DISADVANTAGES/CHALLENGES EXAMPLES

PEPTIDISC &
SAPOSIN

• Diameter of the disc is
dependent on the protein
diameter

• Works at low pH
• Genetically encoded
• Easy to produce in large

quantities

• No assembly surface
• Does not preserve bilayer properties

IN SITU • Direct observation of sample in
native environment

• Low resolution
• Low throughput
• Technically complex

CryoET (28,29) AFM
(30,31) SCC (32)

SUPPORTED LIPID
BILAYERS

• Enables visualisation of
diffusion dependent processes

• Large surface area
• Simple and readily applicable

to AFM, SPR, TIRF, etc.

• Lipid diffusion is significantly reduced compared to
native bilayers

• Can easily study and visualise phase transition
properties

AFM (5,6,33–35) LM
(36–38)
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properties have on PFPs [49]. Modern AFM instruments are becoming increasingly capable of achieving both
high temporal and spatial resolutions, especially when combined with new approaches and algorithms
[109,110]. With improvements in modern instrumentation and new algorithms, we envisage an AFM ‘reso-
lution revolution’ to be on the horizon.

Figure 2. Static and dynamic processes elucidated by cryoEM.

(A) Microfluidic devices enable complex biochemistry and processes to be performed and studied on-chip. These chips also

enable rapid, time-resolved cryoEM. Shown from left to right: microfluidic buffer exchange, time delay for temporal control,

liposome generation, mixing of reactions and last, the coupling of detectors/optics to a microfluidic chip for data collection. (B)

Membrane mimetic technologies enable structural studies of PFPs in a near-native lipid membrane context. Shown are various

examples of nanodiscs [15,161–163], liposomes [39,163], detergent [4] and amphipols [88,164] which have all been used to

study the pore and prepore forms of PFPs. Select cryoEM examples; MPEG1 [39], XaxAB [4], Anthrax toxin [15] and polyC9

[88] (C) Microfluidic and in situ time-resolved cryoEM techniques provide structural insight over small increments of time. Panel

C reproduced from Voss et al. [90]. Stimulation by laser (red) melts the vitreous ice, enabling rapid (photo-dependent;

‘stimulus’) conformational changes to occur before re-vitrification. Followed by standard cryoEM imaging (green).
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Figure 3. State of the art techniques for studying PFPs.

(A) Schematic illustration of AFM height topology measurement. Light is reflected off an atomically small tip which traces the

assembly of PFPs (MAC; illustrated) in real-time. All AFM images reproduced [39,53,102,104,165]. (B) Single-channel

conductance measured over a bilayer. Opening-closing of channels (hypothetical trace; orange/purple) reveals different

stoichiometric states (histogram; S0–S3). ClyA example reproduced from Fahie et al. [118]. (C) Illustration of single-molecule

TIRF microscopy. Immobilised liposomes with an encapsulated fluorescent dye (purple) are tethered to a coverslip.

Fluorescently labelled PFPs (green) are flowed over the surface via microfluidics. Accumulation of PFP on the liposome is

measured in the PFP channel (not shown), while simultaneously membrane integrity is measured in the liposome channel (four

still frames). Pore formation is captured as the sudden loss of fluorescent dye signal upon liposome rupture (circled; Personal

correspondence, A/Prof Till Bölking, UNSW). (D) Schematic diagram of interface bilayer TIRF microscopy. Below; PFO

monomers (green) diffuse on the lipid bilayer over time. Insertion is measured as a sudden loss of diffusion. Modified from

Senior et al. [56]. (E) Examples of PFP systems constructed and studied in silico by MD simulations. Both membrane

properties and pore dynamics can be examined (left-most three [atomistic], far right [coarse grain]). Reproduced from

Varadarajan et al. Cheerla et al. and Vögele et al. [74,121,122].
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Single-molecule fluorescence microscopy
Unlike AFM, a major advantage of fluorescence microscopy is the ability to follow multiple differently labelled
components at comparable temporal resolutions (or higher). As such, fluorescence microscopy, particularly
single-molecule modalities, has been used extensively for PFPs [57]. Indeed, smFRET and TIRF studies have
been employed to study various aspects of PFP dynamics and kinetics. These include measurements of
complex assembly, stoichiometry, diffusion coefficients, single-molecule kinetics and lipid membrane interac-
tions [47,52,54,56,111,112]. Evidently, single-molecule TIRF microscopy is a versatile tool to study multiple
stages of pore formation and probe the mechanism of assembly at high temporal resolution (Figure 3c,d).

Single-channel conductance
Single-channel conductance (SCC) is another powerful and ubiquitous technique used to study individual
nanopores [113–118] (Figure 3b). By establishing an electric potential across an impermeable bilayer, the pres-
ence of a membrane disruption (due to an arc or pore) can be detected by current flow. By measuring the steps
and transient drops in current, their duration and amplitude, various details of the underlying molecular

Figure 4. Translational applications of pore forming protein.

Top row, left to right. Pore-forming proteins (PFPs) are used in next-generation DNA sequencing. DNA is passed through a

nanopore (blue) in the presence of an electric current generated by the flow of ions (yellow circles). Characteristic changes in

current can be mapped to particular nucleobases (including methylated cytosines [Me]). Similarly, nanopore technology has

been applied to proteomics (purple), allowing discrimination of peptides with single amino acid changes. Proteomic nanopores

are often coupled with an enzyme (green), such as an unfoldase or helicase, that threads the peptide through the pore.

Nanopores are also used in metabolomics to detect small molecules. A nanopore (red) can capture an adaptor protein (green)

that binds to a specific metabolite e.g., green amino acid. Metabolite binding induces a conformational change in the adaptor

protein, leading to a characteristic change in ion flow through the nanopore. Bottom row, left to right. PFPs have been used to

deliver antibodies into mammalian cancer cells. Nanopores (green) provide a passage for antibodies (orange) to cross the cell

membrane and bind to their intracellular target (red). PFPs are also a staple pest control agent in agriculture, helping to protect

crops from lepidopteran pests. PFPs from the crop (grey) are ingested by the pest, and subsequently perforate cells lining the

pest’s digestive system. Created with BioRender.com.
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process can be extracted. This includes the size distribution of the nanopore, interactions with solutes or
binding partners (e.g. Vip1/2), as well as pore assembly pathways and kinetics in the context of systems that
form pores via a growing-arc mechanism (Figure 1b) [113–117]. Indeed, SCC forms the technological founda-
tion of new polymer sequencing methods (see applications below). Individual nucleotides or amino acids can
be detected by small blockages of nanopores, which produce a characteristic fingerprint as a function of their
physical properties, like charge and size (Figure 4).

Molecular dynamics simulations
Historically, molecular dynamics simulations have enabled investigation of length and time scales not accessible
to common experimental techniques (Figure 3e). Atomistic simulations of PFPs have revealed flexible hinge
regions [119], protein/lipid interactions [47,74,120], and the distortion or reorganisation of lipid bilayers
[75,121,122]. Furthermore, coarse-grained simulations have enabled larger oligomeric assemblies to be studied
over longer time scales to investigate initial stages of oligomerisation (Figure 3e). Computational models of PFPs
extend beyond structure. Indeed complex interaction pathways and kinetic processes can be modelled mathemat-
ically and simulated to reveal the temporal evolution of the system [55]. Additionally, computation simulations
have been advantageous in translational research in studying electrical fields and current flow of nanopores
[114,123]. While not a comprehensive list, these examples do show how simulations provide a powerful tool to
understand atomistic details, quaternary interactions, and complex, system-level emergent properties of PFPs.

Efforts to re-engineer & modulate PFPs
Applications for PFPs have emerged in both academic and industrial settings. With nature providing a range of
pore scaffolds to harness, re-engineering efforts have aimed to optimise pore properties for specific purposes.
These include next-generation DNA sequencing technologies, which correlate subtle changes in the flow of ions
through a nanopore with the translocation of nucleotide sequences (Figure 4). PFPs commonly used for DNA
sequencing possess a narrow constriction point(s) (∼1 nm) within their lumen [115,124]. As DNA is threaded
through the pore and encounters these narrow regions, the pore becomes partially blocked — reducing current
flow by a characteristic amount for each nucleotide combination. Re-engineering constriction sites (and other resi-
dues lining the pore lumen) by point mutations has greatly improved sequencing accuracy [125,126]. More radical
changes to pore architecture have also been made, including truncation and covalent/non-covalent addition of
adaptor proteins or enzymes [127–129]. Re-engineered PFPs fill several useful niches in DNA/RNA sequencing,
including long-read sequencing [130–132], in-field metagenomics [133–135], and even epigenetics [136–140].
There has also been work to extend nanopore-based technology to various proteomic applications, including

mass identification [117,123,141,142], peptide, and protein sequencing [143–147] (Figure 4). While nanopore-based
proteomics promises extremely high sensitivity, and even the possibility of single-cell proteomics [31], sequencing
polypeptides remains a frontier challenge in PFP engineering. In the case of de novo peptide sequencing, difficulties
lie in translocating chemically diverse peptides of a non-uniform charge density through the pore and deciphering
each of the 20 amino acids. By trapping individual peptides within the wild-type aerolysin pore, it was possible to
distinguish between peptides with single residue substitutions for 13 of the 20 amino acids [147]. However, progress
is still required to sequentially ‘read’ individual residues while passing a peptide through a nanopore.
Another challenge in nanopore proteomics is that protein sequencing requires unfolding and regular ratchet-

ing of the denatured polypeptide chain through the pore. Partnering pores with other enzymes, such as unfol-
dases, helicases, DNA polymerases, and proteasomes has allowed for polypeptide translocation
[144,146,148,149]. However, there is currently an insufficient level of control over single-pass translocation for
accurate residue assignment. To address this, the use of a DNA-peptide conjugate enabled repeated re-reading
of peptides, improving discrimination between a limited set of peptide variants [144]. While several challenges
exist, proteomic nanopores could eventually be used on-bench to detect protein point variants, cleavage events,
or post-translational modifications — all at the single-molecule level [123].
Besides nanopore sequencing, PFPs have also been co-opted for metabolomics — allowing the detection of

specific ligands, such as sugars, amino acids, and vitamins [150–152] (Figure 4). Such systems rely on the pore
capturing an adaptor protein capable of recognising a specific ligand, with the binding of the ligand to the
adaptor generating a distinct change in the nanopore’s ion conductivity. In the future, nanopores may be rou-
tinely used for real-time metabolomics to monitor human health [150], or even in analytical devices for indus-
trial applications [153].
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As drug and cargo delivery systems, PFPs are being developed to transport various effector molecules into
cells [154,155] (Figure 4). For example, clostridium protective antigen toxin (CPAT) has recently been modified
to inject antibodies and other therapeutic molecules into mammalian cells in a controlled and specific manner,
thereby circumventing the membrane barrier [37,38,156]. As such, PFPs may represent a novel class of drug
delivery system.
Meanwhile in agriculture, PFPs derived from the entomopathogenic bacteria, Bacillus thuringiensis, are used

in transgenic crops as a key defence against pests, such as lepidopteran species (Figure 4). These PFPs therefore
help to safeguard various essential commodities such as corn, soy, and cotton by successfully controlling crop
pests — saving billions of dollars annually [35,157,158]. While hugely successful, new PFPs are required to
target emerging pests and to combat the increasingly problematic rise in resistance to existing transgenic crops.
The applications of PFPs mentioned throughout this review have relied on pre-existing pores that have been

adapted to suit particular contexts. Eventually, it may be practical to de novo design PFPs for specific purposes
— allowing complete control over pore properties. In fact, de novo design of simple α and β transmembrane
channels was recently achieved [159,160], potentially laying the foundation for tailor-made PFPs designed for
specific analytes and applications.

Concluding remarks
The field of PFPs is a remarkably diverse and rich area of investigation, covering kinetics, structures to field-
work and proteomics. Recent developments in technology underpin several advances in the field of PFPs.
Increasingly, researchers are relying on advanced techniques and integrative studies to provide insight into the
biological role and function of PFPs. Specifically, microfluidic devices and single-molecule techniques are
gaining greater traction and providing deeper functional insight into various systems. Researchers are finding
novel and exciting areas in which translational applications of PFPs can benefit academia, industry, and bio-
medicine. It is our perspective that the rational de novo design or re-engineering of custom PFPs is the next
frontier in the field of PFPs.

Perspectives
• PFPs are a broad class of molecules which underpin biological processes in immunology,

pathogenicity, development and cell signalling. Furthermore, translational applications of PFPs
can be found in biomedicine, agriculture and biotechnologies such as DNA and protein
sequencing.

• Single-molecule based imaging and spectroscopic technologies are transforming the under-
standing of molecular processes and mechanisms that govern PFP behaviour and function.

• Improved structural, kinetic and mechanistic understanding of PFPs coupled with
cutting-edge computational methods provide a tangible foundation for the next frontier of
research in PFPs — de novo design of custom PFP systems for biotechnology and
biomedicine.
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