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Dynamic compartmentalization is a prevailing principle regulating the spatiotemporal
organization of the living cell membrane from the nano- up to the mesoscale. This non-
arbitrary organization is intricately linked to cell function. On living cell membranes,
dynamic domains or ‘membrane rafts’ enriched with cholesterol, sphingolipids and other
certain proteins exist at the nanoscale serving as signaling and sorting platforms.
Moreover, it has been postulated that other local organizers of the cell membrane such
as intrinsic protein interactions, the extracellular matrix and/or the actin cytoskeleton
synergize with rafts to provide spatiotemporal hierarchy to the membrane. Elucidating the
intricate coupling of multiple spatial and temporal scales requires the application of cor-
relative techniques, with a particular need for simultaneous nanometer spatial precision
and microsecond temporal resolution. Here, we review novel fluorescence-based techni-
ques that readily allow to decode nanoscale membrane dynamics with unprecedented
spatiotemporal resolution and single-molecule sensitivity. We particularly focus on cor-
relative approaches from the field of nanophotonics. Notably, we introduce a versatile
planar nanoantenna platform combined with fluorescence correlation spectroscopy to
study spatiotemporal heterogeneities on living cell membranes at the nano- up to the
mesoscale. Finally, we outline remaining future technological challenges and comment
on potential directions to advance our understanding of cell membrane dynamics under
the influence of the actin cytoskeleton and extracellular matrix in uttermost detail.

Dynamic compartmentalization, a prominent
membrane organizing principle
The concept of compartmentalization is ubiquitous in biology allowing for the complexity and func-
tion of living systems [1–6]. Fluid lipid membranes are semi-permeable barriers compartmentalizing
the cell from the extracellular space and separating the intracellular space into membrane-bound orga-
nelles. However, physical and/or biochemical dynamic compartmentalization also occurs within the
plane of the membrane facilitating functional, lateral subdomains. The most widely studied subdo-
mains of biological membranes are so-called ‘membrane rafts’. According to the lipid raft hypothesis
[7], such rafts are dynamic domains enriched with cholesterol, sphingolipids and other saturated
lipids. These domains form tightly packed, more ordered assemblies, coexisting within the less tightly
packed, non-raft membrane regions. Their function can be described as a dynamic platform for lateral
protein sorting which is capable of facilitating or inhibiting interactions with other biomolecules [8].
On living cell membranes, rafts are thought to be essential for various physiological roles, e.g. signal-
ing and membrane trafficking [1,6,9,10], although their relevance and even existence still remains
disputed [1,10–16].
In model lipid membranes sterols and saturated lipids associate to a liquid ordered (Lo) phase

forming domains of macroscopic as well as of nanoscopic sizes [2,17,18]. These Lo domains coexist
within the liquid disordered (Ld) regions which exhibit faster lipid diffusion and flexibility. The coex-
istence of assemblies of order- and disorder-preferring lipids appears to dictate the membrane
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organization in living cells, starting from the nanoscale and contributing to its hierarchical organization [6,19].
Domains of the Ld phase containing highly polyunsaturated and/or very short lipids increase the contrast with
thicker, more tightly packed domains of the Lo phase and thus stabilize phase separation [20]. This mechanism
was shown to govern the lipid membrane organization in simulations [21,22], on mimetic membranes [23,24]
and on isolated cell membranes [25–27]. Studies on giant plasma membrane vesicles provided compelling evi-
dence that the coexisting Lo-Ld phases constitute the basis for sorting membrane components in a self-
organizing manner [20,28,29]. In particular, it has been reported that saturated lipids, sterols, glycolipids and
certain proteins preferentially associate to more ordered phases, separated from unsaturated lipids and most
other proteins [20,28,30].
Until now, several local organizers that dynamically (re)organize in time, and are responsible for the plasma

membrane compartmentalization have been investigated. First, and as mentioned above, the lipid and choles-
terol content of the membrane is crucial for its lateral organization. Second, proteins play an essential role in
regulating, localizing, and templating the lipid environment [6–8,15,31]. Third, most likely the spatiotemporal
organization of the cell membrane follows a hierarchical order from the meso-down to the nanoscale, being
modulated by the cortical actin cytoskeleton and the extracellular matrix [6,9,19]. Taking together all the
current insights, the cell membrane appears to be highly heterogeneous with multiple components actively and
passively interacting with each other at multiple spatiotemporal scales (Figure 1A). It is also suspected that its
organization serves different functions depending on the length scale [19,32]. Influenced by their environment,

Figure 1. The key local organizers compartmentalizing the plasma membrane and their corresponding diffusion

behavior.

(A) Sketch of the heterogeneous cell membrane composed of different lipids, proteins and other molecules. Dynamic

compartmentalization occurs at different spatiotemporal scales originating from lipid rafts, interactions with the extracellular

matrix and glycocalyx from the outside, and also patterned by the cortical actin cytoskeleton on the cell inside. (B) To probe

the spatiotemporal cell organization of the membrane, lipids and/or proteins of interest can be fluorescently tagged and their

diffusion over time can be recorded. Depending on their location and time point, the diffusion behavior may be freely random,

confined by the occurrence of compartments or hindered by their partitioning into domains.
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lipids and proteins will exhibit a characteristic diffusion behavior which can be used as a readout for their local
organization and/or interaction with other partners (Figure 1B).

First insights into membrane dynamics with
diffraction-limited optical techniques
Over the past decades, biologists have obtained impressive insights into the complexity of living cell membranes
by applying diffraction-limited optical techniques such as epi-fluorescence microscopy, confocal microscopy or
Foerster resonance energy transfer (FRET) [5,28,33] combined with dynamic approaches (fluorescence correl-
ation spectroscopy (FCS) [34–36] or fluorescence recovery after photobleaching (FRAP) [37–39]). These
fluorescence-based techniques have been exploited due to their simple implementation, moderate to low photo-
toxicity, and high temporal resolution. However, their spatial resolution is limited by the diffraction limit of
light to 200–350 nm, preventing the visualization and study of membrane compartments and domains at
smaller spatial scales.

Super-resolution fluorescence microscopy approaches to
resolve nanoscale membrane dynamics
In recent years, a wealth of fluorescence-based techniques has emerged that readily allow the study of the cell
membrane with unprecedented levels of spatial and temporal details. The focus of this review is to offer a
glimpse into these novel techniques, with a particular focus on the field of nanophotonics (Figure 2, acronyms
included in the caption).
Super-resolution fluorescence microscopy overcomes the diffraction limit of light by exploiting the photophy-

sical properties of labeling fluorophores together with tailored illumination schemes. As such, they have pro-
vided insights into nanoscale regions of the plasma membrane, mainly of fixed cells, with much greater spatial
resolution. Super-resolution techniques based on single-molecular localization methods (SMLM) have resolved
receptor nanoclusters on the cell membrane in the range of a few nm, routinely of 10–30 nm [41,42]. A highly
advancing approach are SMLM implementations relying on DNA-based probes (i.e. DNA-PAINT) instead of
conventional fluorophores which allow for quantitative studies at ultra-high spatial resolutions and in a multi-
color fashion [43,44]. Unfortunately, so far, SMLM remain being too slow for true applications in living cells,
in particular for cell membrane studies.
Stimulated emission depletion (STED) microscopy is another powerful super-resolution approach, which

continues to push the diffraction limit of light [45]. STED relies on engineering two focused laser beams to
exclusively detect the fluorescence within a small, nanometric focal spot while depleting the peripheral fluores-
cence via stimulated emission. In view of biological applications, the combination of STED nanoscopy with
FCS has been a major milestone [46–49]. STED-FCS resolved the transient trapping (<10–20 ms) of sphingoli-
pids and GPI-anchored proteins (GPI-APs) into cholesterol-dependent nanoscopic domains as small as 30 nm
in size [47]. The advent of fast laser-beam scanners made it possible to record multiple FCS measurements by
scanning along a line or circle at the micron-scale with kHz frequency, i.e. sSTED-FCS [50]. This approach
allowed to investigate dynamics occurring on living cell membranes with ∼60 nm spatial resolution.
Successively, STED-FCS implementations employing fluorescence lifetime gating have been accomplished on
living cells with improved resolution (∼40 nm) and lower depletion power, thus less phototoxicity [49,51].
However, the tradeoff between the photon budget and technical constraints has not yet allowed to breach
through ∼40 nm of spatial and millisecond temporal resolution simultaneously [49,50,52]. Recently, MINFLUX
nanoscopy has demonstrated 1–3 nm resolution for structures in fixed and living cells. MINFLUX nanoscopy
is neatly merging different super-resolution approaches as it relies on localizing single switchable fluorophores
by applying a donut-shaped excitation beam similar to that provided by STED [40,53]. On model membranes
MINFLUX was able to follow the diffusion of single DPPE fluorescent lipid analogs with kHz count rate at
<20 nm localization and ∼100 ms sampling time [54]. Note that this was achieved in a sparsely fluorescently
labeled environment, an important drawback of the technique that still needs to be overcome. Single-particle
tracking (SPT) is a powerful technique to track individual molecules as they diffuse on the plasma membrane
with nanometer localization precision. Since the initial SPT implementation to uncover live-cell dynamics
[4,55,56], SPT methods continuously improved with regard to camera sampling speed, fluorescent labeling
strategies and tracking algorithms [57,58]. SPT has provided enormous information on the nanoscale dynamics
of raft-associated GPI-APs on the cell membrane. All studied GPI-APs appear to continuously assemble in
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transient (∼200 ms) homodimers likely constituting a possible basic unit of raft domains (∼3–15 nm in size)
depending on dimer-lipid interactions [31]. Subsequently, using dual-color SPT and improved temporal reso-
lution (down to 0.5 ms) it was shown that gangliosides dynamically interact on the timescale of ∼10 ms with
monomers and dimers of GPI-AP in a cholesterol-dependent manner [59]. Also with live-cell SPT the rapid
exchange of sphingomyelin (SM) between GPI-AP assemblies and the bulk membrane has been shown [60].
These results (and others reported earlier) endorse the dynamic character of membrane rafts composed of SM,
cholesterol, and raft-associated proteins in constant exchange with the bulk membrane at the millisecond to
second timescale.
Recently, live-cell SPT has been coupled to photo-activated localization microscopy (PALM), i.e. sptPALM,

enabling the visualization of diffusion dynamics of single molecules at high labeling densities while maintaining
nanometer localization precision. The approach permitted to generate high-density single-molecule maps of the

Figure 2. Super-resolution approaches for membrane dynamics studies.

Currently available super-resolution approaches are displayed with respect to the accessible spatial scale and temporal

resolution. In addition, each approach is highlighted regarding to its capability for multi-color extension and whether

applications have been reported on model membranes or living cell membranes. Acronyms: FCS: fluorescence correlation

spectroscopy, FRAP: fluorescence recovery after photobleaching, SMLM: single-molecule localization microscopy, NSOM:

near-field scanning optical microscopy, SPT: single particle tracking, sptPALM: single particle tracking photo-activated

localization microscopy, (s)STED: (scanning)stimulated emission microscopy, iSCAT: interferometric scattering microscopy,

ZMW: zero-mode waveguide. Note that MINFLUX is not an acronym but ‘a concept for localizing photon emitters in space’

[40]. Also note that we excluded super-resolution approaches such as structured illumination microscopy (SIM) because the

main applications are for 3D-live cell imaging rather than cell membrane studies [41], and other computational approaches

such as SRRF, SOFI, 3B, HAWK, etc.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND).2360

Biochemical Society Transactions (2021) 49 2357–2369
https://doi.org/10.1042/BST20210457

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/49/5/2357/923829/bst-2021-0457c.pdf by guest on 09 April 2024

https://creativecommons.org/licenses/by-nc-nd/4.0/


Gag and VSVG membrane proteins showing different diffusion and clustering behavior [61]. This technique
also resolved the interaction dynamics between membrane and water-soluble proteins on the crowded living
cell membrane [62]. Furthermore, the nanoscale organization of integrins within focal adhesions has been elu-
cidated with ∼50 nm spatial resolution on the living cell membrane [63]. Complementing sptPALM with mol-
ecule dynamics simulations revealed the spatiotemporal dynamics of the Ras protein and in conjunction with a
possible explanation of its role in nanodomain formation and signaling [64,65]. These insights could potentially
be generalized to decode the nanoscale dynamics of more membrane molecules.
Interferometric scattering (iSCAT) microscopy allows to track single-molecule trajectories at video sampling

rates by using 20–40 nm gold nanoparticles as labeling probes [66]. Recently, iSCAT together with extensive
image analysis was able to track the dynamics of an unlabeled protein with nm spatial and ms temporal reso-
lution in 3D over tens of minutes [67]. These results highlight the potential of iSCAT for quantitative live-cell
studies in future.

Correlative nanophotonic approaches offering ultrahigh
spatiotemporal resolution
A different approach to explore nanometric regions of the membrane with increased temporal resolution relies
on the booming field of nanophotonics. Nanophotonic approaches are based on metallic (plasmonic) nanos-
tructures, also termed as plasmonic or photonic nanoantennas, that localize and enormously enhance the exci-
tation field into nanometric regions (plasmonic hotspots) [68]. Hereby, the incident light does not further
propagate but remains highly localized in the near-field proximity of the nanoantenna. The huge potential of
photonic nanoantennas for biological applications lies in the following two properties. First, nanoantennas
provide highly enhanced electromagnetic near-fields resulting in high fluorescent enhancement of fluorescent
molecules having matching absorption and/or emission spectra to that of the antenna resonance. Second,
nanoantennas offer highly localized hotspots of illumination, thus drastically decreasing the observation
volume.
The simplest, yet powerful nanophotonic structure consists in nanometric apertures (typically of 50–200 nm

radii) which are either fabricated onto a planar surface, so-called zero mode waveguides (ZMWs) (Figure 3A)
or onto the apex of an optical fiber which is then mounted on a scanning microscope, the near-field scanning
microscopy (NSOM) approach (Figure 3B, left). Due to the subwavelength size of the nanoaperture, an expo-
nentially decaying electromagnetic field is sustained acting as an effective pinhole upon illumination. Such a
near-field profile as afforded by ZMW and NSOM provides effective detection volumes which are three orders
of magnitude below the diffraction-limited spot and enable single-molecule detection at micromolar concentra-
tions [69].
ZMWs and aperture-based NSOM have been combined with FCS and were successfully applied to follow

living cell membrane dynamics. For instance, the partitioning of ganglioside proteins into 30 nm membrane
domains has been revealed by means of ZMWs [70]. Filling the nanoapertures with fused silica led to planar-
ized ZMWs preventing invaginations in living cell membrane studies [71]. The implementation of ZMWs in
arrays together with wide field detection has further enabled parallelized readout over many ZMW simultan-
eously. Impressive results have been reported on real-time DNA sequencing [72], living cell membranes [73]
and single-molecule FRET of a microfluidic chip [74]. In the case of aperture-based NSOM together with FCS,
it was possible to uncover the anomalous diffusion behavior of the fluorescent lipid analog SM in living cells
within regions of ∼100 nm in size [75]. An exclusive advantage of NSOM over ZMWs is the possibility of per-
forming fluorescence imaging with nanometric resolution together with simultaneous topographic recording of
the cell surface. This approach has revealed nanoclustering of different immune receptors on the plasma mem-
brane [76–78] and allowed the visualization of small rafts enriched by GPI-APs and gangliosides on intact
fixed cell membranes [78,79]. The main limitation of conventional nanoapertures as implemented in ZMWs
and NSOM is the low light throughput exiting from these structures as they do not provide field enhancement.
As such, exploiting these nanoapertures for the study of processes below 50 nm becomes highly challenging.
To overcome this limitation, a leap forward for the NSOM configuration was achieved by engineering a

monopole antenna at the edge of the NSOM aperture (Figure 3B, right) [80]. Using this configuration, the
authors could not only show increased spatial resolution but, importantly, they demonstrated that nanoanten-
nas can manipulate the directional emission of individual molecules. This type of monopole antenna has been
used to image individual proteins and receptor nanodomains on intact cell membranes with an unprecedented
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spatial resolution of ∼30 nm [81]. More recent designs include bowtie antenna apertures (Figure 3C, left) and
hybrid antennas combining a monopole with a bowtie (Figure 3C, right) [82,83]. This hybrid configuration
reached true spatial resolution of 20 nm together with sub-nm localization accuracy on individual molecules
and in a multicolor fashion [83] and has been exploited more recently to control the degree of FRET on single
DNA strands [84].
Similar types of nanoantennas have been directly fabricated on planar surfaces (Figure 3D). With such

planar antenna designs light confinement into sub-20 nm hotspots has been successfully demonstrated [85–87].
Moreover, enhancement factors of over thousand-fold for single-molecule fluorescence signals were achieved
with gold bowtie antennas [85], DNA-origami gold dimers [86,88], and at the apex of gold nanorods [89–95].
In addition, single molecule tracking on supported membranes has been demonstrated using arrays of optical
nanoantennas [96]. These exciting results underscore the potential of nanoantennas for multiple applications,
including biosensing and live-cell studies.
Plasmonic biosensing has grown into a highly active and innovative field on its own as excellently summar-

ized in other reviews [97–100]. Notable plasmonic biosensing applications in the context of nanomedicine are
enhanced Raman spectroscopy with high throughput on microfluidic devices with single-cell sensitivity [101]
and the detection of single amino acid mutations in breast cancer cells [102]. Current efforts emphasize the
need for nanofabrication approaches to engineer large-scale low-cost platforms for high-throughput label-free
detection. Two versatile platforms of large-scale antenna arrays based on gold nanoholes [103] or nanogap

Figure 3. Exemplary nanophotonic designs.

(A) Zero-mode-waveguides (ZMW) of different radii fabricated into an aluminum film. (B) The initial NSOM approach consisting

in a circular nanoaperture (left) and the integration of a monopole antenna to enhance the light throughput and to provide

ultra-high field confinement. (C) NSOM-antenna realizations by replacing the circular nanoaperture by a bowtie antenna (left)

and by combining the bowtie aperture with a monopole antenna (right) leading to a hybrid nanoantenna. (D) Nanoantenna

configurations in the shape of a nanorod, bowtie or dimer fabricated onto a planar substrate. (E) Large-scale implementation of

bowtie nanoantenna arrays on a planar surface. (F) Planar ‘antenna-in-box’ platform consisting of arrays of dimer antennas

embedded in a nanoaperture. Arrays of antennas can be routinely fabricated with different gap sizes, from 50 nm down to

10 nm in size.
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antennas fabricated by hole-mask colloidal lithography [104] reported high sensitivity and multiplexing capaci-
ties for point-of-care applications.
To extend the application of nanoantennas to live-cell studies, they need to provide efficient rejection of the

surrounding background fluorescence and accessible illumination hotspots on a planar, biocompatible substrate
at large scale. A reliable large-scale nanoantenna fabrication has been achieved and validated on living cell
membranes using bowtie nanoantennas of reproducible 20 nm gaps (Figure 3E) [105]. Successful fluorescent
background reductions were initially based on exploiting weak emitters (quantum yield <8%) which allow to
obtain high fluorescence enhancement within antenna hotspots while keeping the background signal to a
minimum [85,88,91–93,105–108]. Another initial attempt was based on lifetime filtering [89,109,110] since the
presence of an antenna dramatically reduces the fluorescence lifetime of molecules [111].

Planar ‘antenna-in-box’ platform to resolve live-cell
membrane dynamics
To allow for fluorescence experiments with single-molecule sensitivity at physiologically relevant concentrations
an innovative ‘antenna-in-box’ design has been developed [87]. This design consists of a dimer nanogap
antenna made of gold and centered inside a nanoaperture (Figure 3F). The nanogap determines the nanoscale
confinement of the incoming light into a plasmonic hotspot whereas the surrounding metallic cladding effi-
ciently screens the fluorescence background. The final improvement to achieve a planar ‘antenna-in-box’ plat-
form was attained by adding template stripping to the multistep nanofabrication process [112]. This led to the
readily availability of a planar platform containing thousands of narrow nanogap antennas with accessible plas-
monic hotspots compatible with dynamic live-cell studies. This planar nanoantenna platform combined with
FCS was applied to follow the nanoscale lipid dynamics on mimetic as well as on living cell membranes
[18,113]. Together with cholesterol-depletion experiments, compelling evidence of cholesterol-induced ∼10 nm
nanodomains with ∼0.9 ms transient trapping times partitioning on the living membrane was reported [113].
These results confirmed the existence of highly dynamic raft nanodomains on the living cell membrane.
Moreover, this work validates the potential of planar plasmonic antenna arrays combined with fluorescence
microscopy to enlighten and quantify the dynamics and interactions of lipids and raft-associated proteins on
the living cell membrane.
The large-scale availability of planar nanogap antenna arrays facilitate their implementation for live-cell

imaging including the adaptation of established biological sample preparation protocols. Additionally, these
types of platforms accommodate gap sizes between 10 to 50 nm which have been exploited to perform so-called
‘spot-variation FCS’ [114] at the nanoscale [18,113,115,116], at scales significantly smaller than possible with
sSTED-FCS [50] or ZMWs [117,118]. Moreover, a planar nanoantenna platform can be readily combined with
other techniques to increase the information content of the sample under study. For instance, correlative
studies of antenna-FCS and atomic force microscopy (AFM) and spectroscopy permitted to resolve the influ-
ence of hyaluronic acid, an abundant ECM component, on the nanoscale lipid organization of model lipid
membranes [115]. This shows the potential to use the planar nanogap antennas for correlative measurements,
albeit requiring substrate optimization. The fixed antenna positions on the planar substrate enable measure-
ments under different (treatment) conditions on the exact same position and/or to correlate measured diffusion
behavior with spatial location. Since the antenna platform provides diffraction-limited spots (nanoaperture
without antenna) on the same substrate, the nanoscale diffusion behavior can be directly linked with that
obtained by confocal means.
In sum, the planar nanogap antenna arrays comprise a versatile platform to study spatiotemporal heterogene-

ities on living cell membranes at the nano- up to the mesoscale. Future directions involve the multi-color
extension of current antenna approaches to examine nanoscale interactions between different molecules, includ-
ing lipids and proteins. This can be achieved by choosing the right antenna material, for instance replacing
gold by aluminum [105,118,119] or by the use of novel (dielectric) materials [120–122]. Another future chal-
lenge consists in increasing the throughput of experiments by enabling parallel detection of hundreds of anten-
nas simultaneously, in an analogous way as to ZMWs [69,73,74]. One possible multiplexing approach would be
to switch from confocal to wide-field illumination and from APDs to a fast camera detection scheme [123,124].
Although the temporal resolution is reduced to the millisecond regime by switching to camera detection, the
diffusion of most proteins in the living cell membrane is also two orders of magnitude slower than freely dif-
fusing dyes. Thus, the tradeoff between camera framerate, smaller diffusion areas and the photon budget of the
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fluorescent labels should guarantee for a high signal-to-noise ratio to investigate live-cell dynamics. One add-
itional advantage provided by antennas lies in the fluorescent enhancement of the molecules interacting with
the antennas. This adds flexibility when choosing the fluorescent probe as weakly emitting dyes can equally be
used, in strong contrast with STED-FCS or other SPT-based approaches that require bright and photostable
dyes. However, a careful characterization of the complex antenna’s near-field profile is required to derive quan-
tification of the experimental data and unbiased data interpretation.

Conclusion
Together, the approaches discussed in this review show capabilities to decipher the nanoscale organization and/
or nanoscale diffusion dynamics on living cell membranes. Impressive insights have been achieved which have
increased our understanding of the spatiotemporal cell membrane organization and its link to function. Yet,
despite the collective effort of the community to develop and optimize imaging approaches offering high
spatiotemporal resolution, challenges remain. Most super-resolution approaches would highly benefit from
fluorescent probes with enhanced photophysical properties (brightness and photostability) and minimal sample
perturbation [125,126]. Encouraging advances for improved fluorophores rely on sophisticated genetic modifi-
cations [127], biorthogonal labeling strategies and click-chemistry [128,129]. With the quest for high-
throughput solutions, efficient data processing and an expanded toolbox of analysis algorithms become crucial.
In this aspect, machine-learning approaches are promising to not only automatize data analysis but also to
remove human bias. Besides, machine learning has been employed to create tailor-made optimized designs for
nanoantenna designs [130].
We have experienced a growing pursuit to combine existing techniques leading to a multitude of correlative

approaches. Successful implementations are sptPALM, STED-FCS, FCS combined with nanoantenna arrays
and even with AFM. Such solutions not only multiply the wealth of information but also amplify the reliability
of the obtained data. For example, a combined FCS-AFM approach permits to track the diffusion of the mol-
ecule of interest as well as to locate its position on the sample’s topography. We envision that the quest for
more and improved correlative approaches will continue and will encompass molecular force measurements.
To accelerate the development and expansion of the toolbox of super-resolved single-molecule techniques for
live-cell studies, the close collaboration among researchers across fields will be key.
In conclusion, we provided a glimpse into the currently available techniques capable to follow nanoscale

dynamics on the living cell membrane with ultrahigh spatiotemporal resolution and single-molecule sensitivity.
We gave an overview of challenges to overcome and presented future directions. We highlighted the great
potential of photonic nanoantennas combined with FCS to become a versatile, correlative toolbox to study live-
cell dynamics spanning the nano- up to the mesoscale. Particularly, we shall witness how these advances
resolve dynamics on the living cell membrane under the influence of the actin cytoskeleton and extracellular
matrix in uttermost detail. So, we will eventually understand the mechanisms governing the basic unit of life,
the cell.

Perspectives

• Dynamic compartmentalization is a prevailing principle regulating the spatiotemporal organiza-
tion of the living cell membrane at multiple scales. Correlative nanophotonic approaches
provide the required nanometer spatial and sub-millisecond temporal resolution to enlighten
nanoscale live-cell membrane dynamics.

• Planar nanogap antenna arrays combined with FCS are a versatile platform to follow single-
molecule diffusion in the crowded environment of the living cell membrane. The large-scale
availability of planar nanoantennas with gap sizes between 10 to 50 nm have been exploited
to perform ‘spot-variation FCS’ at the nanoscale reporting on transient nanoscopic heteroge-
neities on model lipid and on living cell membranes. The nanoantenna-FCS approach can be
combined with other techniques such as AFM and force spectroscopy to provide correlative
information on the plasma membrane organization.
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• We envision that the currently available toolbox of super-resolved and nanophotonic techni-
ques for live-cell studies will rapidly expand and will encompass improved fluorophores, multi-
color extension, high-throughput solutions, and efficient data processing. A close collabor-
ation among researchers across fields will be key to eventually understand the mechanisms
governing the basic unit of life, the cell.
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