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Pulmonary arterial hypertension (PAH) is a fatal disease of the cardiopulmonary system
that lacks curative treatments. The main pathological event in PAH is elevated vascular
resistance in the pulmonary circulation, caused by abnormal vasoconstriction and vascu-
lar remodelling. Ion channels are key determinants of vascular smooth muscle tone and
homeostasis, and four PAH channelopathies (KCNK3, ABCC8, KCNA5, TRPC6) have
been identified so far. However, the contribution of ion channels in other forms of PAH,
which account for the majority of PAH patients, has been less well characterised. Here
we reason that a variety of triggers of PAH (e.g. BMPR2 mutations, hypoxia, anorectic
drugs) that impact channel function may contribute to the onset of the disease. We
review the molecular mechanisms by which these ‘extrinsic’ factors converge on ion
channels and provoke their dysregulation to promote the development of PAH. Ion chan-
nels of the pulmonary vasculature are therefore promising therapeutic targets because of
the modulation they provide to both vasomotor tone and proliferation of arterial smooth
muscle cells.

Introduction
Pulmonary arterial hypertension (PAH) is a progressive disease of the cardiopulmonary system with
life-limiting consequences. PAH is defined by a mean pulmonary artery pressure above 25 mmHg at
rest, and end-expiratory pulmonary artery wedge pressure of less than 15 mmHg. Disease factors
include: (i) genetic origins (i.e. mutations in genes crucial for pulmonary vascular function); (ii) other
pathologies including congenital heart disease, portal hypertension, HIV or COPD; (iii) drugs or
toxins, or (iv) unknown factors (i.e. PAH of idiopathic origins) [1]. In all cases, a complex patho-
logical cascade leads to narrowing and remodelling of arteries and/or increased vascular reactivity
ultimately leading to increased vascular resistance and elevated pulmonary blood pressure which may
precipitate in right heart failure and death [1]. The development of PAH-specific therapies signifi-
cantly improved patients’ outcome and quality of life [2]. However, poor prognosis (57% five-year sur-
vival rate), resistance to current drugs, and lack of curative treatment means there is an unmet need
for new and innovative targets in PAH pharmacotherapy [2].
Ion channels have an important homeostatic function whereby they regulate the resting membrane

potential and cytoplasmic [Ca2+] of pulmonary arterial smooth muscle cells (PASMC), which is a key
determinant of vasoconstriction and vascular cell proliferation [3,4]. Therefore, the dual involvement
of ion channels in the control of arterial tone and remodelling makes them potential key mediators in
the pathogenic cascade of PAH, which can be therapeutically targeted. Supporting this view is the
notion that mutations in ion channel genes may lead to hereditary forms of PAH [4,5]. Ion channel
dysregulation may also be secondary to alterations in the cellular environment that take place during
PAH, and thus contribute to worsening of the condition [6,7]. We therefore suggest that dysregulation
of ion channels could be a convergence point in PAH pathogenesis, independent of the pathological
trigger.
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Here we examine the pathophysiological roles of ion channels in PAH, and how their dysfunction, either dir-
ectly caused by genetic alterations in ion channel genes (‘intrinsic’ dysregulation) or secondary to altered cellu-
lar microenvironment (‘extrinsic’ factors), can lead to PAH. Since a range of recent reviews has covered the
pathophysiology of PAH channelopathies [4,5], we primarily focus this review on the extrinsic factors (e.g.
hypoxia, endothelial dysfunction, drugs, HIV) that contribute to dysfunction of plasmalemmal channels in
PASMCs during PAH.

Overview of channelopathies in PAH
A range of de novo and heritable mutations in PASMC ion channels have been implicated in familiar forms of
PAH, these include mutations in the KCNK3, ABCC8, KCNA5 and TRPC6 genes. [4]
The TWIK-related acid-sensitive K+ (TASK) channels belong to the superfamily of Two-Pore Domain K+

(K2P) channels [8]. The TASK1 (KCNK3) channel is responsible for the background IKN leak current that con-
tributes to the resting membrane potential, vasomotor tone as well as proliferation of PASMCs [7,9]. So far, 12
loss-of-function missense mutations were identified in KCNK3, which was the first channelopathy discovered in
PAH [5]. The lack of ‘protective’ heterodimerisation with TASK3 appears to underlie the lung-specific pheno-
type of KCNK3 mutations [10]. Several in vivo studies confirmed that TASK1 loss-of-function precedes haemo-
dynamic changes and is sufficient to cause PAH [7,9].
ATP-sensitive K+ (KATP) channels promote hyperpolarisation and vasodilation in vascular smooth muscle

cells [11]. Recently, 23 loss-of-function mutations in ABCC8 (encoding the regulatory SUR1 subunit) were
found in PAH patients [5,12]. These heterozygous mutations appear to impair channel trafficking and/or affect
ATP sensitivity [13]. Several paradoxes surround this second PAH channelopathy, such as the lack of congeni-
tal hyperinsulinism, or the observation that patients with Cantú syndrome, with gain-of-function mutations in
Kir6.1 and SUR2 subunits, also exhibit pulmonary hypertension [14]. The role of KATP in the pulmonary circu-
lation therefore remains to be clarified.
In the pulmonary vasculature voltage-gated K+ (Kv) channels also regulate the resting membrane potential,

Ca2+ influx and vasoconstriction as well as cellular apoptosis, migration and proliferation [3,15]. Strong lines of
evidence support a causal role for Kv1.5 dysfunction in PAH [16]. Sequencing of idiopathic PAH (IPAH)
patients identified a number of mutations in the promoter and coding regions of KCNA5 believed to affect its
transcription, trafficking, and interaction with its β subunits [17,18]. A new variant has also been found in
Pulmonary Hypertension of the Newborn (PPHN) [19]
Transient Receptor Potential Canonical (TRPC) channels are a subfamily of non-selective cation channels,

which represent a major alternative route of Ca2+ entry outside voltage-gated Ca2+ channels, by functioning as
both store-operated (SOC) and receptor-operated (ROC) channels [20]. Pharmacological blockade and knock-
out experiments found a strong correlation between TRPC6 expression, capacitative Ca2+ entry, resting cyto-
plasmic [Ca2+], vascular tone and proliferation of rat PASMCs [21]. In PAH, increased TRPC6 expression pro-
motes vasoconstriction and neomuscularisation of pulmonary arteries [22]. A genotypic analysis found that the
254(C→G) single nucleotide polymorphism (SNP) was 2.85 times more common in IPAH patients [23]. It is
of interest that another mutation in TRPC6 (F443I) was recently found to associate with PPHN [19].

Extrinsic dysregulation of ion channels in PAH
Individuals with mutations in ion channels represent a minority of PAH patients, whereas dysregulation of ion
channels is also observed in patients with other forms of PAH [6,7,24]. PAH can be induced by a wide variety
of triggers, giving rise to different classifications (Table 1) [1]. In this section, the involvement of ion channels
in the various forms of PAH is examined (Figure 1).

Germline mutations
BMPR2
Signalling events involving the transforming growth factor-β (TGFβ) family, in particular bone morphogenetic
proteins (BMP), are an important regulator of PASMC homeostasis. More than 806 loss-of-function variants in
bone morphogenetic protein receptor type II (BMPR2) have been identified, which account for 75% and 25%
of heritable PAH (HPAH) and IPAH cases, respectively [24,25].
Several lines of evidence link BMP signalling to regulation of K+ channels in PASMC. Indeed, BMP2

up-regulates the expression of α subunits through Mothers Against Decapentaplegic Homologues (SMADs),
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Table 1 Clinical classification of PAH

1. Pulmonary arterial hypertension (PAH)

1.1 Idiopathic PAH (IPAH)

1.2 Heritable/familial PAH (HPAH)

1.2.1 BMPR2 mutations

1.2.2 Other mutations (e.g. KCNK3, CAV1)

1.3 Drug-induced PAH (DPAH) (e.g. fenfluramine)

1.4 PAH Associated with comorbidities (APAH)

1.4.1 Connective tissue disease (e.g. systemic sclerosis)

1.4.2 Human immunodeficiency virus (HIV) infection

1.4.3 Portal hypertension

1.4.4 Congenital heart disease

1.4.5 Schistosomiasis

10. Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis

100. Persistent pulmonary hypertension of the newborn (PPHN)

Figure 1. Dysregulation of PASMC ion channels during PAH.

Red lines represent inhibitory influences vs activation for green arrows. Stars represent proteins with mutations associated with PAH.
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while decreasing the expression of inhibitory β and γ subunits in human PASMC [26]. In a murine model of
PAH, BMPR2 loss-of-function reduced Kv1.5 expression, and resulted in increased voltage-gated Ca2+ entry
and vasoconstriction [27]. Additive effects between BMPR2 and KCNA5 mutations may underlie the earlier age
of onset and higher disease severity in digenic patients, suggesting that mutational load and the presence of
‘second hits’ is important in PAH progression [28]. BMPR2 deletion was also shown to down-regulate TASK1
and promote vasoconstriction in rat PASMC, although in this case modulation appears to be
transcription-independent, but instead due to altered channel trafficking [25]. ABCC8 mRNA expression was
also up-regulated in lung biopsies obtained from BMPR2 patients [29].
BMPR2 mutations also promote the formation of atypical heteromeric BMP receptors, shifting BMP signal-

ling towards non-canonical MAPK-dependent pathways in murine PASMCs [30,31]. This shift is important, as
BMP2 was shown to inhibit the expression of TRPC1/4/6 channels and proliferation of proximal rat PASMCs,
whereas BMP4 up-regulated TRPC1/4/6 expression and distal PASMCs proliferation via non-canonical cascade
PASMCs [32,33]. Overall, BMPR2 haploinsufficiency favours the formation of different BMP receptor com-
plexes, suppressing the canonical, pro-apoptotic BMP2/SMAD signalling in proximal PASMCs, and potentiat-
ing the non-canonical, pro-proliferative BMP4/p38 axis in distal human PASMCs (Figure 2) [34,35].

Caveolin
The scaffolding protein caveolin is a structural component of caveolae, which are specialised dynamic lipid
rafts important for microdomain functional coupling [36]. For instance, in the pulmonary vasculature, the
caveolin ‘signalplex’ regulates arterial vasoconstriction by interacting with Ca2+ regulatory molecules [36].
Several mutations that decrease caveolin-1 (CAV1) expression were found in PAH, and CAV1 knock-out in
animal models leads to pulmonary hypertension [37,38]. Contrary to the loss of expression in pulmonary endo-
thelium, CAV1 expression is up-regulated in rat PASMCs and promotes proliferation [39]. Caveolin-1 directly
influences the kinetics, assembly and regulation of several vascular channels via its scaffolding domain. For
instance, binding of caveolins to Kir6.1, Kv1.5 and TASK1 reduced their functional activity in heterologous
expression systems [40–42]. Caveolin-1 is also a positive regulator of TRPC assembly and SOCE in mice pul-
monary vascular cells [43]. Increased caveolin expression in PASMCs of two rat models of PAH (chronic
hypoxia and monocrotaline) was found to enhance agonist-induced SOCE/ROCE and vasoconstriction in pul-
monary arteries [44].

NOTCH3
The transmembrane NOTCH3 receptor controls the differentiation of PASMCs from proliferative to contractile
phenotype [45]. Three genetic variants in NOTCH3 were linked to PAH [19,46]. Clinical studies found a causa-
tive role for the overexpression of NOTCH3 in the abnormal proliferation of PASMCs in PAH [47,48].
NOTCH3 enhanced Ca2+ entry in human PASMCs by (i) up-regulating TRPC6-dependent SOCE and (ii) inhi-
biting Kv1.2/Kv1.5 activity, which in turn promotes voltage-gated Ca2+ entry [45,49]. The resulting increased
Ca2+ mobilisation leads to PAH by preferentially promoting vascular remodelling [47]. The fact that some of
these effects were transcription-independent hints that non-canonical signalling of NOTCH3 may be involved
in this pathological process [45,49]. Indeed, the two NOTCH3 missense mutations were shown to boost prolif-
erative signalling of NOTCH3, despite actually decreasing its downstream transcriptional activity [46]. The
NOTCH intracellular domain (NICD) has also been proposed to directly influence ion channel activity [45,49].

Epigenetics
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding and silencing the
translation of target mRNAs. Several studies have shown a correlation between dysregulation of miRNAs,
altered ionic currents and dysfunction of rat and human pulmonary artery in vivo. For example, the Kv1.2,
Kv1.5, Kv7.5, BKCaβ1 and TASK1 channels are under direct negative control of miR-1, miR-23b-3p, miR-29b,
miR-138, miR-190, miR-206 and miR-222, whose up-regulation in PAH (e.g. 4-fold for miR-1) decreased
channel expression in human and rodent PASMCs, and promoted membrane depolarisation and arterial wall
hypertrophy [50–52]. In addition, down-regulation of miR-135a-5p increased TRPC1 expression and promoted
PASMC proliferation [53]. miRNAs are promising diagnostic markers of PAH, as well as potential therapeutic
targets to correct ion channel dysfunction in PAH.
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Comorbidities and PAH
HIV
PAH is one of the most severe complications of HIV infection and a major cause of mortality in HIV-PAH
patients, leading to a lower survival rate compared with other PAH patients [54]. HIV infection increases the
incidence of PAH by 2500-fold in human subjects [54], and can trigger PAH in some laboratory animals (rats
and macaques, but not mice) [55–57]. Two studies showed that HIV transgenes down-regulated the IKN and
IKV currents (decreased Kv1.5, Kv7.1 and Kv7.4 expression) in rodent pulmonary arteries, possibly contributing
to membrane depolarisation [55,57]. The Vpu protein of HIV-1 shares a high homology with the N-terminal
of TASK1 channel, and it promotes abnormal oligomerisation of Vpu and TASK1 subunits, which leads to
their degradation in heterologous expression systems [58]. The connection between HIV and PAH remains to
be determined, one question being why only a small proportion (8.3%) of HIV patients have PAH.

Hypoxia
Hypoxia is a known trigger of pulmonary hypertension and ion channels are essential mediators of the hypoxic
pulmonary vasoconstriction (HPV) [59]. The inhibition of Kv1.5 and Kv2.1 channels in the small resistance
pulmonary arteries is a major contributor of HPV [15,60], but the underlying regulatory mechanisms remain
controversial [61,62]. Although redox signalling is a key component of HPV, the extent of changes in the level
of reactive oxygen species (ROS) during hypoxia are not fully defined, and both a decrease and an increase in
ROS were shown to inhibit Kv channel opening [61]. The molecular mechanisms of oxygen sensing in
PASMCs are also not fully defined. Mitochondria, which produce ROS in proportion to PO2 levels, are likely
involved in the PASMC response to hypoxia [62]. Cytoplasmic NADPH oxidases, which also produce ROS,
reportedly lead to inhibition of Kv1.5 channel activity and modulation of channel trafficking via oxidation of
C-terminal cysteine residues [63]. Also the TASK1 channel mediates an O2-sensitive current in carotid body

Figure 2. Consequences of shift from canonical BMPR2 to non-canonical BMP signalling on ion channel function in

PASMCs.

Continuous arrows denote inhibition/down-regulation (red) or activation/up-regulation (green). Dotted arrows represent

undefined links. ‘P’ denotes phosphorylated, activated mediator. MAPK, mitogen-activated protein kinase; ActRII, activin type

2 receptor.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 1859

Biochemical Society Transactions (2021) 49 1855–1865
https://doi.org/10.1042/BST20210538

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/49/4/1855/919851/bst-2021-0538c.pdf by guest on 17 April 2024

https://creativecommons.org/licenses/by/4.0/


cells [64]. Conversely, hypoxia down-regulated both TASK1 expression (via the RELMβ-STAT3-NFAT
pathway) and activity (via the kinase Src), which promote human PASMC proliferation and vasoconstriction
[65,66].
Hypoxia led to activation of store-operated Ca2+ entry (SOCE) and elevation of cytoplasmic [Ca2+] in rodent

PASMCs [67]. Mice in which the Trpc1 and Trpc6 genes were deleted (knockouts) had impaired hypoxic
response and loss of hypoxic vasoconstriction [22]. The rise in ROS up-regulates both the expression and
assembly of SOCE channels to promote Ca2+ mobilisation in hypoxic PASMCs [68,69]. There is evidence indi-
cating that hypoxia directly modulates TRPC6 via the second messenger diacylglycerol and the enzyme
AMP-activated protein kinase. Calcium Release-Activated Calcium (ORAI) channels are involved in the control
of proliferation of rat PASMCs, but their role in PAH requires further investigation [21].
The mechanisms of chronic hypoxia, more relevant to the context of PAH, may differ from those of HPV.

Hypoxia-inducible factors (HIFs) are key transcription factors that contribute to remodelling of pulmonary
artery during chronic hypoxia [70]. Selective down-regulation of the expression of Kv α subunits (Kv1.1, Kv1.5,
Kv2.1, Kv4.3, Kv9.3) in PASMC via HIF1α occurs during chronic hypoxia; this signalling pathway is abnor-
mally potentiated by ROS during PAH [71,72]. In contrast, hypoxia increased the expression of Ca2+-
activated K+ (BKCa) channels in rat PASMCs, which may explain the BKCa up-regulation seen in pulmonary
arteries of PAH patients [73]. The underlying mechanism involves altered expression of the auxiliary β1
subunit via HIF1α, which enhances BKCa channel sensitivity to voltage and Ca2+, hence promoting PASMC
relaxation and thus constituting an endogenous protective mechanism [74].
Chronic hypoxia also selectively up-regulates a range of non-selective cation channels in PASMCs including

TRPC1 and TRPC6, via the HIF1α and Notch signalling pathways, and the osmo-mechanosensitive cation
channels, TRPV1/4 [75–77]. The family of acid-sensitive ion channels (ASIC) can also participate in SOCE in
pulmonary vascular cells [67]. ASIC1-dependent Ca2+ entry during hypoxia is independent of changes in gene
expression [67], but it depends on inactivation of the inhibitory effect of H2O2 on ASIC1 channel, as well as
stimulation of forward trafficking via the protein RhoA [67,78]. The increase in cytoplasmic [Ca2+] in PASMCs
observed in hypoxia led to activation of transcription factor NFAT which down-regulates Kv1.5 expression and
mitochondrial homeostasis, potentially hardwiring ionic dysfunction in a pathological feedback loop [79].

5-HT Signalling and anorectic drugs
Appetite-suppressants that potentiate serotonin signalling (e.g. fenfluramine, benfluorex) were taken off market
after causing a drug-induced PAH epidemic in the 1960–70s [80]. The causal role of up-regulated 5-HT signal-
ling in PASMCs of PAH patients and animal models further reinforced this ‘serotonin hypothesis’ of PAH
[81]. The serotonin transporter (SERT) is strongly implicated in the pathogenesis of PAH [82], and some
studies have linked a gain-of-function polymorphism in SERT to an increased risk of PAH [83].
5-HT is both a potent vasoconstrictor and PASMC mitogen, known to up-regulate TRPC1, TRPC6, TRPV4

currents in rat PASMCs [84,85]. Anorectic drugs constrict pulmonary arteries by inhibiting Kv1.5 currents,
although the underlying molecular mechanisms are not fully understood and may include direct KV channel
inhibition, activation of 5-HT2 receptors or internalisation by SERT [86]. The pathways downstream of the
5-HT receptor and transporter seem to converge on second messengers like ROS [87] and kinases [86], which
are known modulators of ion channel activity. For instance, 5-HT triggers the endocytosis of Kv1.5 channels in
PASMC through a 5-HT2AR/tyrosine kinase/caveolin pathway [88].

Endothelial dysfunction
The endothelium produces several vasoactive mediators that play an important role in PASMC homeostasis. A
shift towards vasoconstrictive and mitogenic endothelial signals is one of the first events in PAH. It is still
unclear whether endothelial dysfunction is a cause or consequence of PAH; however a monocrotaline-induced
animal model of PAH presents pulmonary endothelium dysfunction, which is targeted by current PAH therap-
ies (e.g. endothelin receptor antagonists, prostacyclin analogues) [89]. Endothelial dysfunction is accompanied
by up-regulation of endothelin-1 and down-regulation of NO and PGI2 signalling [89]. These factors modulate
vascular ion channels through cyclic nucleotides and protein kinases [90]. Endothelin-1 promotes depolarisa-
tion in rodent and human PASMCs and vasoconstriction by inhibiting IKV, IKATP and up-regulating ICaCl,
IBKCa and TRPC currents through the PLC/PKC pathway [90]. Endothelin-1 also inhibits TASK1 in PASMC,
which could involve both gating inhibition in TASK1 as well as its phosphorylation-dependent internalisation
[91,92]. The NO/cGMP/PKG pathway promotes vasorelaxation by activating IKv, IKCa, IKN, IKATP, and
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inhibiting ISOCE [90,93]. Likewise, the PGI2/ cAMP/PKA axis activates IKv, IKCa, IKN, IKATP and inhibits TRPC
channels [90,94].

Summary and implications for therapy
Ion channels are key determinants of the tone and the remodelling of the pulmonary artery. Over 50 genetic
variants in four ion channels (KCNK3, ABCC8, KCNA5 and TRPC6) have been found in PAH patients [4]. In
this review, we show that ion channel dysfunction occurs in virtually in all forms of PAH (Figure 1).
A better characterisation of the regulation of ion channels in PAMSCs could provide new information about

why so many different triggers (e.g. anorectic drugs, HIV, hypoxia) can all lead to PAH. Integrative ‘omic’
approaches hold hope for establishing a deep genotype-phenotype correlation of the disease. Identifying new
pathways that regulate PASMCs ion channels will be important to draw an accurate picture of their pathological
relevance in the various forms of PAH (e.g. the recently proposed link between TASK1 and vitamin D defi-
ciency) [95]. Also, the molecular mechanisms that dysregulate the Kv7 channel [96], the mechanosensitive
Piezo1 channel [97] and the Ca2+-activated Cl− channel TMEM16A [98] in PAH remain poorly understood.
Multiple studies showed that activators of K+ channels [7,99] and inhibitors of both Cl- channels [98] and

TRPC channels [100] can prevent and/or reverse PAH in animal models. Optimising the selectivity, potency
and lung-specific delivery of these compounds will therefore be paramount to the development of new PAH
therapies. Recent advances in the determination of structures for these channel types may also expedite drug
discovery efforts towards this goal

Perspectives
• Highlight the importance of the field: Pulmonary arterial hypertension is a multifactorial and

severe disease with no curative treatments. Vasoconstriction and arterial remodelling both
contributes to elevated resistance to blood flow and increased blood pressure.

• A summary of the current thinking: Ion channels are involved in the control of both arterial
tone and proliferation of pulmonary artery smooth muscle cells. Dysfunction of ion channels
plays a causative role in PAH, and may link the different pathological triggers of PAH to the
onset of the disease.

• A comment on future directions: Ion channels are currently under-explored targets for PAH.
Understanding the regulation and pathophysiological role of ion channels in PAH will provide
new avenues for therapeutic intervention.
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