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The COVID-19 pandemic has prompted intense research efforts into elucidating mechan-
isms of coronavirus pathogenesis and to propose antiviral interventions. The interferon
(IFN) response is the main antiviral component of human innate immunity and is actively
suppressed by several non-structural SARS-CoV-2 proteins, allowing viral replication
within human cells. Differences in IFN signalling efficiency and timing have emerged as
central determinants of the variability of COVID-19 disease severity between patients,
highlighting the need for an improved understanding of host–pathogen interactions that
affect the IFN response. ADP-ribosylation is an underexplored post-translational modifi-
cation catalyzed by ADP-ribosyl transferases collectively termed poly(ADP-ribose) poly-
merases (PARPs). Several human PARPs are induced by the IFN response and
participate in antiviral defences by regulating IFN signalling itself, modulating host pro-
cesses such as translation and protein trafficking, as well as directly modifying and inhi-
biting viral target proteins. SARS-CoV-2 and other viruses encode a macrodomain that
hydrolyzes ADP-ribose modifications, thus counteracting antiviral PARP activity. This
mini-review provides a brief overview of the known targets of IFN-induced ADP-ribosyla-
tion and the functions of viral macrodomains, highlighting several open questions in the
field.

Introduction
Viruses must infect a host cell in order to replicate, co-opting the cellular machinery to aid in the rep-
lication of its genetic material and for translation of viral proteins. Once infected, host cells activate
innate immune responses, centred around a class of cytokines termed interferons (IFNs), that induce
a cellular antiviral state that can inhibit several crucial steps of the viral replication cycle, essentially
precluding the establishment of a viral infection [1]. Therefore, viruses have had to evolve intricate
mechanisms to evade or suppress host IFN responses, leading to an evolutionary ‘arms race’ that
shapes both host antiviral responses and viral evasion mechanisms [2]. Among the multitude of
molecular mechanisms involved in host–pathogen conflicts [3], one recently emerging ‘battleground’
is the post-translational modification of proteins with ADP-ribose units, termed ADP-ribosylation,
and its reversal by a virally encoded enzyme present in SARS-CoV-2 and other viruses [4,5]. This
mini-review will describe how ADP-ribosylation, and its hydrolysis by viral macrodomains, can shape
antiviral responses and discuss the rationale for the development of SARS-CoV-2 Nsp3 macrodomain
inhibitors as novel antiviral therapeutics.
The type I IFN response is activated by a variety of sensor proteins, collectively termed pattern rec-

ognition receptors (PRRs), that each recognize the presence of different types of viral nucleic acids or
other pathogen-associated molecular patterns (PAMPs) in different compartments within
virus-infected cells [6,7]. Each sensor activates different signalling cascades that converge on the acti-
vation of the canonical IKK complex, comprised of IKKα, IKKβ and NEMO, and of the IKK-like
kinases TBK1 and IKKε [1,8]. These kinases then phosphorylate the IRF3 and IRF7 transcription
factors, as well as inducing NF-κB-dependent transcription, resulting in the expression of a range of
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pro-inflammatory cytokines, including interferons α (IFNα) and β (IFNβ), which collectively activate and regu-
late both innate and adaptive immune responses [9]. Secreted IFNs then bind to transmembrane IFN receptors
both on the virus-infected cell itself and on neighbouring cells. This activates a secondary signalling cascade,
initiated by IFN receptor-bound JAK kinases, which phosphorylate transcription factors of the STAT family,
such as STAT1 and STAT2, leading to their translocation to the nucleus and subsequent induction of hundreds,
if not thousands, of genes collectively termed interferon-stimulated genes (ISGs) [10]. Many ISGs participate in
feedback mechanisms that regulate the magnitude of both primary and secondary IFN signalling cascades,
while others have effector functions that either target viral factors directly, or modify host cell processes to
inhibit viral replication or maturation [11].
Some ISGs are members of the poly(ADP-ribose) polymerase (PARP) family, which are a class of enzymes

that utilize NAD+ as a substrate to modify target proteins with ADP-ribose units, either as mono(ADP-ribose)
or as poly(ADP-ribose) chains [12]. Although historically associated with DNA damage signalling and repair,
ADP-ribosylation is emerging in recent years as an important regulator of cellular antiviral responses [4]. This
is underscored by the fact that some of these PARP genes are under strong evolutionary pressure in the
primate lineage, as often observed with genes engaged in host–pathogen conflicts [13,14]. The human genome
encodes 17 members of the PARP family, characterized by the presence of a conserved PARP catalytic
domain that is generally located at the C-terminus [12]. Analysis of publicly available data on gene expression
changes induced by the IFN response suggests that of the human PARPs, five are strongly and reproducibly
induced by IFN signalling (PARP9, PARP10, PARP12, PARP13 and PARP14) and at least another three
(PARP7, PARP8 and PARP11) are often detected as ISGs in these large datasets (Figure 1) [15]. While most
of these are bona fide ADP-ribosyl transferases that directly catalyze mono-ADP-ribosylation of target pro-
teins, PARP13 (ZAP/ZC3HAV1) is catalytically inactive [16,17] and PARP9, which is also catalytically inactive
in isolation [16], forms a heterodimer with the E3 ubiquitin ligase DTX3L that has mono-ADP-ribosyl trans-
ferase activity [18,19]. The next two sections describe the roles of these IFN-responsive PARPs, first in the
context of feedback mechanisms that modulate IFN signalling itself, followed by their functions as antiviral
effectors.

IFN-responsive PARPs and feedback regulation of IFN
signalling
Given the central role of the IFN response as an antiviral signalling cascade, its activity is regulated and fine-
tuned at every level by a variety of positive and negative feedback loops, many of which involve PARPs
(Figure 2).
One such positive feedback is mediated by the shortest isoform of PARP13, known as ZAPS, which is

IFN-responsive and favours IFN signalling by enhancing the activity of the pattern recognition receptor RIG-I,
a critical sensor of viral RNA molecules [20]. Mechanistically, ZAPS depletion severely blunted activation of
NF-κB and IRF3 in response to the RIG-I ligand 3pRNA, possibly due to reduced RIG-I oligomerization [20].
Similarly, depletion of the IFN-induced PARP14 also severely impairs IFN production in response to PRR

agonists [21,22], although the nuclear accumulation of the IRF3 transcription factor was unaffected by PARP14
loss. Since the recruitment of RNA polymerase II to the IFNβ gene was impaired in PARP14 depleted cells
[21], PARP14 is likely to promote IRF3-dependent transcriptional activation of its target genes, including the
IFNβ gene, although the target protein(s) that it modifies in this context remain(s) unknown.
Downstream of IFN receptor binding, PARP9 and its heterodimeric partner, the E3 ubiquitin ligase DTX3L

[23], are thought to promote STAT1-dependent induction of ISGs, potentially through modification of histones,
but again the precise mechanism of action is currently unclear [24,25]. Interestingly, PARP9 and PARP14 were
shown to have antagonistic roles in IFNγ-induced macrophage activation, with PARP9 promoting
IFNγ-induced STAT1 phosphorylation, while PARP14 was shown to mono-ADP-ribosylate STAT1, reducing
the transcriptional activation of ISGs [26]. Recently, we have shown that STAT1 phosphorylation and ISG
induction are unaffected by PARP9 or DTX3L deletion, suggesting that this feedback mechanism may be
context-dependent [27].
Another potential positive feedback mechanism is mediated by PARP12, whose expression is also IFN

responsive [28]. PARP12 overexpression was shown to promote NF-κB-dependent transcriptional activation
[28], although a more detailed mechanistic understanding of this effect is currently lacking.
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Figure 1. IFN-induced gene expression changes of PARP family members.

Data for each of the 17 human PARP genes was downloaded from the Interferome 2.0 database [13], which contains manually curated microarray

datasets of type I, II or III IFN-induced genes. Each dot represents an entry in which a given PARP gene was found to be significantly up-regulated

(P < 0.05) within 24 h of IFN treatment in human cells, irrespective of the treatment time, cell type or type of IFN used. Datapoints in which PARP

gene expression was not significantly changed or down-regulated relative to baseline are omitted for clarity. Multiple data points from the same

dataset are often present.

Figure 2. Schematic representation of the primary and secondary IFN signalling cascades, highlighting steps that are regulated by PARPs.

In the primary signalling cascade, PARP13 promotes RIG-I activation, PARP7 inhibits TBK1 and PARP10 inhibits NEMO-dependent signalling,

whereas PARP12 facilitates NF-κB-dependent transcription, PARP14 promotes IRF3/7-dependent production of interferons and PARP13 restricts

IFN mRNA levels. In the secondary cascade, PARP11 reduces IFN receptor levels, while PARP9 and PARP14 have antagonistic roles in

STAT1-mediated induction of ISGs. Refer to the main text for further clarification.
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Conversely, PARP7 is one of a few PARPs shown to negatively regulate IFN signalling. PARP7 expression is
strongly induced by activation of the aryl hydrocarbon receptor (AhR), but is recurrently observed as an
IFN-responsive gene as well [22,29] and can be induced in virus-infected cells even in the presence of AhR
inhibitors [30], suggesting that its expression is regulated by multiple pathways. Importantly, PARP7 depletion
was shown to enhance IFN signalling, increasing type I IFN production and thus reducing the replication of
several viruses [31]. Mechanistically, PARP7 seems to mono-ADP-ribosylate and inhibit the TBK1 kinase, thus
reducing IRF3 phosphorylation and subsequent IFN production [31].
Likewise, PARP10, which is also an IFN-responsive PARP [32], negatively regulates signalling events in the

innate immune response, although its effects on the primary IFN response have not been directly demonstrated
yet. PARP10 is known to mono-ADP-ribosylate and inhibit NEMO, which is a central component of the IKK
kinase complex required for the activation of NF-κB signalling [33]. Since NEMO can also promote
TBK1-dependent phosphorylation of IRF3 in certain contexts [34], PARP10 may suppress IRF3-dependent
IFN production in a similar fashion to PARP7.
Interestingly, the short isoform of PARP13, ZAPS, already mentioned above as a positive regulator, has also

been implicated in a negative feedback affecting IFN signalling. ZAPS was found to bind to the mRNA of
several of the IFN genes, promoting their degradation, such that ZAPS-depleted cells displayed a more pro-
longed IFN response [35].
Another negative feedback mechanism is mediated by PARP11, which was recently implicated in the regula-

tion of type I IFN receptor levels. PARP11 suppresses the secondary IFN signalling cascade in response to type
I IFN by mono-ADP-ribosylation and stabilization of β-TrCP, which is a ubiquitin ligase that targets the type I
IFN receptor subunit IFNAR1 for proteasomal degradation [36]. Thus, PARP11 promoted the degradation of
IFNAR1, reducing the responsiveness of cells to IFNα [36].

ADP-ribosylation and IFN-induced effector functions
While the above examples illustrate the diverse roles of ADP-ribosylation in modulating IFN signalling cascades
(Figure 2), several PARPs can also have direct antiviral functions, modifying both host or viral proteins to
supress viral replication (Figure 3).

Figure 3. Schematic representation of the antiviral effector functions of PARPs.

PARP7 and PARP13 promote the degradation of viral RNA, and PARPs 7, 10, 12 and 13 restrict protein translation. PARPs 12, 13 and 14 localize to

stress granules containing stalled translation complexes, and PARP12 promotes vesicle trafficking. PARP9/DTX3L, PARP10 and PARP12 can

directly ADP-ribosylate and inhibit viral proteins.
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One important strategy to restrict viral replication is the recognition and targeted degradation of viral RNAs.
The best-studied example of this is PARP13, which can specifically bind viral RNAs, often based on their
higher CpG content relative to host-derived RNA [37], targeting them for degradation by several mechanisms
[38,39]. Interestingly, the long isoform of PARP13, ZAPL, seems to have a more prominent antiviral role than
the shorter ZAPS isoform [35,40], potentially due to a different subcellular localization of the long isoform
caused by a prenylation site [41]. Although these roles of PARP13 do not involve ADP-ribosyl transferase activ-
ity [42], recent efforts to identify PARP14 ADP-ribosylation targets identified several modification sites on
PARP13, suggesting that PARP14 may regulate PARP13-dependent viral RNA decay [43]. Similar to PARP13,
the N-terminal zinc fingers of PARP7 have also been shown to bind viral RNA for exosome-mediated degrad-
ation [44] without the requirement for PARP7 catalytic activity.
Another important antiviral mechanism is the inhibition of protein translation from viral mRNAs. The

binding of PARP13 to viral RNAs can reduce their association with ribosomes, reducing their translation
[45,46], and recent evidence suggests that specific ribosome frameshifting events, such as the ORF1a/b slippage
event in SARS-CoV-2 can be regulated by PARP13 binding as well [47]. Strong inhibition of protein synthesis
was also observed in cells overexpressing PARP7, PARP10 or PARP12L (the long isoform of PARP12) from
virally encoded constructs, although a clear mechanistic understanding of this effect is currently lacking
[28,29,48]. Interestingly, the IFN-responsive PARPs 12, 13 and 14 have been shown to localize to stress gran-
ules [28,49,50], which are thought to be cytoplasmic aggregates of stalled translation complexes induced by
several forms of cellular stress, including viral infections [51]. While the function of stress granules, and the
ADP-ribosylation of its components, are poorly understood, there is growing evidence for a central role of this
structure in host antiviral mechanisms [52].
During their intracellular replication cycle, many viruses hijack cellular membrane trafficking mechanisms,

such as the endocytic and the secretory pathways, for the transport of viral genomes or proteins throughout the
cell [53]. Recently, PARP12 was shown to affect the intracellular trafficking of viral proteins, by promoting
transport from the Golgi to the plasma membrane via ADP-ribosylation of Golgin-97 [49,54,55].
Direct modification of viral proteins with ADP-ribose has also been observed in several instances. PARP12

was shown to ADP-ribosylate Zika virus proteins NS1 and NS3, promoting their proteasomal degradation [56].
Similarly, the PARP9/DTX3L complex can modify the encephalomyocarditis virus 3C protease, leading to its
degradation by the proteasome [24]. While ADP-ribosylation of the nucleocapsid protein was detected in
several coronaviruses (CoVs), both the function of this modification and the PARP responsible for catalyzing it
remain elusive [57]. Recently, PARP10 was shown to ADP-ribosylate the chikungunya virus Nsp2 protein, inhi-
biting its protease activity [58].

The viral macrodomain
Given the breadth of ADP-ribosylation targets that regulate cellular antiviral mechanisms (Figures 2 and 3),
and the likely multitude of targets yet to be discovered, it is perhaps unsurprising that viruses have evolved
mechanisms to counteract the activity of host PARPs. The catalytically inactive PARP13 is targeted for degrad-
ation or otherwise inhibited by a variety of viral mechanisms [4], while some viral families, such as CoVs and
members of the alphavirus-like superfamiliy, encode a macrodomain that can bind and hydrolyze the
ADP-ribose modifications catalyzed by host PARPs [5,59,60].
One open question is why particular families of viruses evolved a macrodomain to suppress host

ADP-ribosylation, while others did not. A clear separation can be observed, even between closely related
viruses, based on the presence of PARP enzymes that participate in innate immune signalling in the host
species [61], but the question remains as to why other single-sense positive-strand RNA viruses that infect
mammalian species have not evolved macrodomains, such as flaviviruses and picornaviruses, or the
coronavirus-related arteriviruses. The presence of a macrodomain does not correlate with the type of vesicle
these (+)ssRNA viruses utilize to protect replication intermediates from detection by host PRRs [62], but one
possibility is that differences in viral mRNA capping mechanisms could account for this distinction.
Alphavirus-like viruses (macro+) have a non-canonical mechanism of 50RNA capping that differs both from
the canonical pathway utilized by flaviviruses (macro−) and from the protein-capped structure employed by
picornaviruses (macro−) [63]. For nidoviruses, including arteriviruses (macro−) and coronaviruses (macro+),
the capping mechanism is incompletely understood, mainly due to the lack of an identifiable guanylyltransfer-
ase activity, although a recent study suggests that the RNA polymerase itself could catalyze this step in
SARS-CoV-2 [64]. Interestingly, arteriviruses (macro−) and coronaviruses (macro+) likely have different cap
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methylation mechanisms [65], but a more precise definition of these differences in capping, and their effects
on defining the PRRs involved in sensing nucleic acids produced during the lifecycle of these viral families will
be required to clarify this issue.
In alphaviruses, the macrodomain is present at the N-terminus of non-structural protein 3 (Nsp3), which

also contains a central zinc-binding domain and a C-terminal hypervariable domain (HVD) involved in
protein–protein interactions [66]. Given that several PARPs localize to stress granules (above), and that the
core stress granule component G3BP1 is ADP-ribosylated [50], it is particularly interesting that the alphavirus
Nsp3 HVD binds to stress granule components [67]. Recently, the catalytic activity of the Nsp3 macrodomain
was shown to regulate the composition of these stress granules [68], presumably to promote the release of host
translation factors required for viral protein production. Alphaviruses harbouring macrodomain mutations that
impair ADP-ribose binding or hydrolysis are severely attenuated due to reduced viral replication [69–71],
although the mechanisms by which the macrodomain aids viral RNA replication are currently unclear.
Interestingly, the Hepatitis E virus macrodomain is also required for viral RNA replication [72] and is located
on ORF1, in close proximity to the helicase and RNA polymerase domains, suggesting a more direct role in the
replication process itself.
In coronaviruses (CoVs), the macrodomain is contained in Nsp3, which is a large multidomain protein with

slightly different domain architectures in different CoVs. Eight domains are strictly conserved: two ubiquitin-
like domains (Ubl1 and Ubl2), a hypervariable region, a macrodomain (Mac1), a papain-like protease (PL2Pro),
the Nsp3 ectodomain, as well as the Y1 and CoV-Y domains of unknown function [73]. Nsp3 also contains
two transmembrane regions that anchor the protein to the double-membrane vesicle (DMVs) that envelops the
viral replication–transcription complex and segregates viral RNA replication from the host cell cytosol [74].
Nsp3 is essential for the formation of DMVs [75] and thus for viral replication, but only the Nsp3 ectodomain
is positioned towards the interior of these vesicles, while all other domains — including the macrodomain —
are thought to be cytosolic [73]. Consistent with that, Nsp3 macrodomain mutations that abrogate ADP-ribosyl
hydrolase activity do not appreciably impair viral RNA replication itself [76,77]. Nonetheless, lack of macrodo-
main activity still severely attenuates mouse hepatitis virus (MHV) due to increased IFN signalling in host cells
infected with the mutant virus compared with WT [22,76,78], suggesting a critical role for this domain in sup-
pressing host IFN signalling. PARP12 and PARP14 were shown to be required for this increased IFN signalling
in cells infected with macrodomain-mutated MHV, suggesting that the ADP-ribose modifications they catalyze
may be the principal targets of this CoV macrodomain [22]. Interestingly, a recent study challenged this view
via the identification of MHV macrodomain mutations that severely impaired viral replication, while only mod-
estly affecting IFN suppression [79], likely due to differences between the effect of these mutations on
ADP-ribose binding compared with ADP-ribosyl hydrolase activity [69–71,79].
In this context, it is important to note that both mono- or poly-ADP-ribose can be attached to different ami-

noacid residues, including glutamates, aspartates, lysines, arginines, serines or cysteines [80] and that the
MacroD-type viral macrodomains discussed here are thought to selectively hydrolyze mono-ADP-ribose-modi-
fied glutamates and aspartates [70,81,82]. While the aminoacid preference of many PARPs is insufficiently
defined, particularly for the less-well studied PARPs discussed here, there is evidence for the SARS-CoV-2
macrodomain acting on PARP10, PARP12 and PARP14-catalyzed modifications in vitro [58,61,83].
Recently, we have shown that ectopic expression of the SARS-CoV-2 macrodomain in isolation is sufficient

to hydrolyze ADP-ribose modifications induced by IFN signalling in human cells [27]. Interestingly, this
IFN-induced and macrodomain-sensitive ADP-ribosylation signal was completely dependent on the PARP9/
DTX3L heterodimer and had no effect on either the primary or the secondary IFN signalling cascades, suggest-
ing that this modification was an effector of IFN signalling. Since the PARP9/DTX3L heterodimer is known to
ADP-ribosylate the C-terminus of ubiquitin [18] and Nsp3 contains ubiquitin-like domains and a deubiquiti-
nating PL2Pro domain [84,85] in addition to the macrodomain, coronavirus Nsp3 may modulate host
ADP-ribosylation and ubiquitination in a concerted manner.

SARS-CoV-2, IFN responses and the search for
macrodomain inhibitors
In the course of the current COVID-19 pandemic, it has become increasingly evident that the adequate timing
and robustness of the host IFN response is an important determinant of clinical outcome. Severe COVID-19 is
often associated with defective IFN responses, such as the presence of autoantibodies against type I IFN [86] or
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genetic predisposition caused by mutations in components of the IFN signalling cascade [87,88]. Similarly,
reduced or delayed timing of IFN production relative to peak viral loads and/or aberrantly sustained IFN sig-
nalling in late stage disease are associated with poorer clinical outcomes [89–93]. Taken together with the fact
that SARS-CoV-2 employs several strategies for suppression of host IFN signalling [89,94–96] and that early
treatment with recombinant IFN can prevent disease in animal models of COVID-19 [97,98], it is clear that
the competition between effective induction of IFN responses by host cells and viral mechanisms to counteract
IFN signalling has important clinical consequences. Therefore, the search for pharmaceutical interventions that
shift this balance via inhibition of viral IFN suppression mechanisms, such as inhibition of the Nsp3 papain-
like protease [99], has garnered significant attention.
In this context, several efforts to develop SARS-CoV-2 Nsp3 macrodomain inhibitors are underway, on the

assumption that the macrodomain is similarly critical for SARS-CoV-2 pathogenicity as previously described for
related CoVs, although direct evidence for this is currently lacking. Our group has screened drugs already
approved for human consumption [27], which would allow immediate application, but could not identify repur-
posed macrodomain inhibitors. Schuller et al. [100] undertook a large screen using both crystallographic and
computational methods to identify low molecular mass chemical fragments that bind different portions of the
SARS-CoV-2 macrodomain active site, which can subsequently be combined into larger molecules, whereas
Brosey et al. [101] have modified inhibitors for the human ADP-ribosyl hydrolase PARG in search of compounds
that target the related CoV macrodomain. Ni et al. [102] co-crystalized the macrodomain with a series of nucleo-
tide analogues, identifying a remdesivir metabolite, while Virdi et al. [103] performed a high-throughput screen
in libraries of drug-like compounds using differential scanning fluorimetry and Sowa et al. [104] developed a
FRET-based assay for high-throughput screening of compound libraries. Despite some encouraging results, none
of these efforts identified macrodomain inhibitors with sub-micromolar binding affinities yet.
Critically, to develop compounds that have broad activity against many if not all viral macrodomains, while

sparing macrodomains contained in human proteins, it is important to identify structural differences between
these macrodomains that can be exploited. Evolutionary divergence in active site residues substantially alters
the mode of binding to the adenosine ring and distal ribose moieties, while different macrodomain families
seem to employ completely different reaction mechanisms [61], suggesting that this should be achievable.

Conclusion
As highlighted throughout this mini-review, much remains to be learned about the roles of ADP-ribosylation
in the regulation of IFN signalling and downstream antiviral mechanisms, as well as the importance of viral
macrodomain-dependent reversal of these modifications for viral replication and pathogenesis. A better under-
standing of these mechanisms and the development of potent and specific compounds will be critical to test
the clinical potential of viral macrodomain inhibitors to treat viral diseases and to prepare humankind for the
next CoV pandemic that will inevitably strike in the coming years or decades.

Perspective
• ADP-ribosylation is emerging as an important regulator of innate immunity, that is targeted by

some viruses to counteract host antiviral mechanisms.
• Much remains to be understood about the molecular targets of IFN-induced host

ADP-ribosylation, and how viral macrodomain activity affects viral replication and pathogenesis.
• A better understanding of these processes will be necessary to assist the development of

macrodomain inhibitors as a novel class of antivirals.
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