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Protein glycosylation is one of the most common post-translational modifications that are
essential for cell function across all domains of life. Changes in glycosylation are consid-
ered a hallmark of many diseases, thus making glycoproteins important diagnostic and
prognostic biomarker candidates and therapeutic targets. Glycoproteomics, the study of
glycans and their carrier proteins in a system-wide context, is becoming a powerful tool in
glycobiology that enables the functional analysis of protein glycosylation. This ‘Hitchhiker’s
guide to glycoproteomics’ is intended as a starting point for anyone who wants to explore
the emerging world of glycoproteomics. The review moves from the techniques that have
been developed for the characterisation of single glycoproteins to technologies that may
be used for a successful complex glycoproteome characterisation. Examples of the variety
of approaches, methodologies, and technologies currently used in the field are given. This
review introduces the common strategies to capture glycoprotein-specific and system-
wide glycoproteome data from tissues, body fluids, or cells, and a perspective on how
integration into a multi-omics workflow enables a deep identification and characterisation
of glycoproteins — a class of biomolecules essential in regulating cell function.

Protein glycosylation — the cells’ Swiss Army knife
Protein post-translational modifications (PTMs) enable the cell to produce profound structural and
functional diversity from a limited number of protein-encoding genes [1]. Glycosylation plays an
essential role across all domains of life [2]. Glycoproteins, together with other glycoconjugates, form
the glycocalyx surrounding every living cell [3]. In this highly complex microenvironment, cell-surface
receptors, signalling and cell adhesion molecules mediate and regulate cellular communication pro-
cesses [4]. Intracellularly, O-GlcNAc glycosylation acts within the cytosol in a dynamic interplay with
phosphorylation and is biosynthetically independent from the membrane and soluble glycoproteins
trafficked to the extracellular environment after their formation [5,6].
In Eukaryotes, glycosylation is crucial for cell functions such as protein folding, regulating signalling

or protein activity [2,7,8]. Congenital disorders of glycosylation (CDGs) are often embryonically lethal or
phenotypically severe for affected individuals, emphasizing the essential role of glycosylation to life [2,9].
There are also examples of glycosylation ‘defects’ that do not impact normal development (e.g. human
ABO blood groups [10]), which, however, can influence the susceptibility to infectious diseases and
create crucial population diversity [11]. Changes in cell glycosylation have been associated with
systemic pathologies such as (but not limited to) inflammation [12,13], cancer [14–19] or Alzheimer’s
disease [20,21]. Disease-associated changes in protein glycosylation are now considered a hallmark in
many diseases, making glycans and glycoproteins promising molecular features with enormous diagnos-
tic and prognostic value and potential therapeutic targets for precision medicine [22].
This review aims to provide an ‘easy-to-digest’ introduction to the analytical approaches relevant

for studying protein glycosylation. For a comprehensive introduction to the diverse biological
functions of protein glycosylation, readers are referred to the freely available Essentials of Glycobiology
textbook [23]. Understanding the molecular basis of how glycans are involved in health and disease
requires technologies to precisely determine both the glycan structures (glycomics), and characterise
their location and structure at discrete sites on glycoproteins (glycoproteomics) expressed by a cell or

Version of Record published:
20 July 2021

Received: 9 April 2021
Revised: 3 June 2021
Accepted: 23 June 2021

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 1643

Biochemical Society Transactions (2021) 49 1643–1662
https://doi.org/10.1042/BST20200879

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/49/4/1643/919901/bst-2020-0879c.pdf by guest on 09 April 2024

http://orcid.org/0000-0003-4759-1728
http://orcid.org/0000-0001-8327-6843
http://orcid.org/0000-0002-7532-4021
http://orcid.org/0000-0002-8452-1350
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1042/BST20200879&domain=pdf&date_stamp=2021-07-20


in an entire organ, body fluid, tissue or organism of interest. While the literature harbours many excellent tech-
nical reviews covering specific aspects of glycomics (such as [24–34]) and glycoproteomics (examples include
[35–44]) technologies and methodologies, there is a gap in the literature surveying the methods and practical
issues of modern glycoproteomics relevant to beginners in the field. This mini-review intends to provide a
concise introduction to the current strategies available to generate glycoproteomics data and to provide some
guidance for designing tailored glycoproteomics experiments.

Strategies to identify glycoproteins and their glycosylation
features from complex samples
There are five common stages in glycoproteomics analyses (Figure 1). Within each of these stages, a variety of
techniques and tools are available that can be combined in different ways. The selection of specific tools will
inevitably impact the generated data, as each technique comes with specific advantages and limitations that can
impact the success of an experiment.

Stage 1: glycoprotein extraction
The first step of any glycoproteomics experiment is to access the glycoproteins of interest from the complex
biological matrix. Methods for tissue or cell lysis and protein extraction are diverse, and often depend on the
type and available amount of the biological sample. Following tissue homogenisation or sonication and cell-
disruption, the extraction step facilitates access to the (glyco)proteins of interest, in particular as many mem-
brane glycoproteins require the presence of detergents to ensure sufficient solubility [45]. Established protocols
using ultracentrifugation are available to enrich membrane glycoproteins [46] but sample amount is a limiting

Figure 1. Schematic representation of the five key stages of a glycoproteomics experiment.

Stage I: Extraction of glycoproteins from biological samples. Stage II: Proteolysis of glycoproteins, optional glycopeptide enrichment and labelling

and offline fractionation to prepare the samples for MS analysis. Stage III: Online separation and fragmentation-based identification of

glycopeptides. Stage IV: Bioinformatic (operator supervised) analyses of the data generated and integration of orthogonal data (e.g. glycomics data)

to perform qualitative and quantitative glycoproteome profiling. Stage V: Data sharing and accurate reporting of experimental parameters provide a

solid basis for integration with other -omics research and reuse in the glycoscience community.
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factor. In the case of frozen or formalin-fixed tissues, more intensive physical disruption techniques such as
pressure-assisted extraction can provide better yields [38,47]. Protein extraction from body fluids is comparably
straightforward, as these specimens already contain soluble glycoproteins. Please note that changing buffer and/
or salt concentrations or depletion of highly abundant proteins, often used in proteomics experiments, can
result in the unintended loss of glycoproteins at the sample preparation step [48].
If other biomolecules such as DNA, RNA, metabolites, proteoglycans, glycosaminoglycans, lipids, glycolipids

or glycans released from proteins are also to be analysed as part of a multi-omics study, the extraction condi-
tions need to be adapted accordingly. In the case of glycolipids, for example, the frequently used chloroform–
methanol precipitation method can be used to separate glycolipids from glycoproteins and other lipids [49,50]
(Figure 2). Importantly, the composition and pH of the cell lysis buffer will also affect the solubility and
integrity of the extracted glycoproteins, as will the presence of certain detergents, salts, denaturing agents and
protease inhibitors. Finally, technologies such as filter-aided sample preparation (FASP), facilitate the use of
complex MS-incompatible buffers for cell lysis, thus enabling the downstream processing of the extracted
glycoproteins in Stage 2 (Figure 1) [51].

Stage 2: fractionation and sample preparation of
glycopeptides
In Stage 2, the extracted glycoproteins need to be prepared for downstream MS or LC–MS-based characterisa-
tion (see Stage 3). While there are some examples where top-down glycoproteomics of semi-purified, intact
proteins is successfully applied to diagnose CDGs (reviewed in [52]) and native MS has been used to gain a
more holistic view of multi-glycosylated proteins (e.g. myeloperoxidase [53] and neutrophil elastase [54]),
bottom-up strategies using proteases are the most widely used approaches for clinical glycoproteomics. The two
key steps in Stage 2 are (i) proteolytic digestion of the extracted glycoproteins and (ii) enrichment of glycopep-
tides/glycoproteins from the complex biological mixtures, though not necessarily in this order.
Intact glycoproteins or glycoprotein complexes can be fractionated by targeted affinity strategies such as

immunoprecipitation, 2D gel electrophoresis, SDS–PAGE or lectin chromatography before proteolysis.
Alternatively, glycopeptide enrichment is performed after the proteolytic digestion, or the glycopeptides may be
pre-fractionated using conventional separation techniques to increase the analytical coverage of the sample of
interest [42,55].
In system-wide glycoproteomics, glycopeptide enrichment remains an essential step since glycopeptides

exhibit reduced ionisation efficiency in mass spectrometry compared with unglycosylated peptides, which is
further aggravated by the intrinsic macro- and micro-heterogeneity of their glycan moieties [38,56]. Together,
in un-enriched samples, these factors result in lower glycopeptide signal intensities relative to their non-
glycosylated counterparts and a risk that these molecules are not being selected for fragmentation analyses.

Proteolytic digestion of complex glycoprotein mixtures
Proteases are the ‘scissors’ used in bottom-up glycoproteomics experiments, producing a mixture of glycopep-
tides and peptides [57,58]. Trypsin is the most widely used protease due to its high specificity, availability, and
efficiency over a range of conditions (e.g. pH, salts, detergents) [59,60]. As an additional benefit, the resulting
C-terminal arginine/lysine residues carry a positive charge, enhancing the ionization and fragmentation of
(glyco)peptides [61]. Other proteases such as chymotrypsin, endoproteinase Glu-C, Asp-N and Lys-C, are
equally useful for comprehensive glycoproteomics, due to their complementary cleavage specificities [62].
Using dual-protease approaches often increases glycoprotein identification and sequence coverage for the
in-depth characterisation of the glycoproteome [63–65].
However, these proteases often inefficiently digest mucin or mucin-like glycoproteins [41,66,67]. Their dense

glycosylation makes their already few conventional protease cleavage sites in mucin-domains less accessible,
posing unique challenges for successful MS analysis [68]. Excitingly, a suite of novel proteases, the so-called
mucinases, have recently become available that facilitate the glycoproteomics analysis of mucins [44]. For
example, the OpeRATOR® O-protease requires the presence of an O-glycan on a serine/threonine residue to
cleave N-terminally before this site of glycosylation. Thus, this cleavage preference generates peptides that
feature N-terminal O-glycosylation, and its application has resulted in the successful mapping of approximately
3000 O-glycosites [69,70]. Nevertheless, OpeRATOR® does not always follow this cleavage pattern and it is
strongly advised to perform additional glycopeptide sequencing to confirm glycosylation site localisation. The
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Figure 2. Example of an approach to integrate a representative glycoproteomics workflow into a multi-omics

study. Part 1 of 2

Stage I: After tissue lysis, material for genomic, transcriptomics or metabolomic analyses can be retrieved before the

separation of lipids and glycolipids from glycoproteins for example by chloroform:methanol:water extraction. Stage II:
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secreted protease of C1 esterase inhibitor (StcE), a zinc metalloprotease [71], has also recently been used to
generate O-glycopeptides from mucins, which significantly improved O-glycosite mapping [68].
Generally, glycoproteomics workflows rely on proteases with defined specificity such as the ones mentioned

above. However, multiprotease mixtures such as Pronase, or proteases with very broad substrate specificity such
as Proteinase K, can be of value when characterising single glycoproteins or simple mixtures [72,73]. These pro-
teases exhibit a broad substrate specificity to produce glycopeptides with variable lengths (down to a single amino
acid residue), which can be useful for the in-depth analysis of purified glycoproteins and to cover otherwise
difficult-to-access regions within a protein. Such broadly specific proteases generate extremely heterogeneous
glycopeptide mixtures, making them unsuitable for the analysis of complex samples.

Enrichment using glyco-epitope binding agents
Enrichment strategies that take advantage of the presence of the glycan moiety are fundamental to improve gly-
coproteome coverage [42,74]. Antibodies, lectins or comparable binding agents (e.g. aptamers) have found
widespread application to enrich or fractionate complex mixtures of glycoproteins or glycopeptides [45,75–77].
Plant-derived lectins are the most widely used agents for this purpose, but these often show reactivity to several
different glyco-epitopes, particularly in the presence of a large dynamic range of glyco-structures [78]. As a
consequence of the broad binding affinity patterns of most lectins, any conclusions about the nature of the
enriched glyco-structures need to be carefully considered and ideally backed with additional experiments
(e.g. glycomics) that provide a higher level of compositional and structural information [79].
Lectin affinity chromatography (LAC) has been used to successfully enrich protease-produced glycopeptides

with short O-GalNAc structures such the ones derived from glycoengineered SimpleCell lines [80,81] or on
cytosolic O-GlcNAc glycoproteins [6,82]. Chemical strategies based on releasing the glycans with simultaneous
labelling of O-GlcNAc glycosylation sites, followed by thiol-Sepharose affinity-enrichment of these modified
peptides have also been successfully employed for O-GlcNAc glycoproteomics [83]. Multi-LAC, the combin-
ation of two or more lectins within one column, has also been successfully employed to enrich glycopeptides
for glycoproteomics experiments [42].
Probes based on bacterial and human lectins or specific anti-glycan antibodies generally appear to exhibit

affinity to more specific glyco-epitopes than plant-derived lectins, but their commercial availability can be
limited [84]. Unfortunately, the quality and purity of these agents varies drastically between vendors, and many
show considerable levels of impurities that can jeopardise the interpretation of glycoproteomics experiments
(Kolarich D, personal observations).

Physicochemical agents for the enrichment of glycopeptides
A variety of enrichment strategies are based on non-biological reagents that target the physicochemical properties
of the glyco-moieties of glycopeptides such as hydrophilicity, size, negative charge or the chemical properties of
specific monosaccharides. These include approaches such as acetone precipitation [85,86], titanium dioxide
(TiO2) for the enrichment of sialylated glycopeptides [87–89], boronic acid functionalised beads [90,91],
electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) [92,93] or the widely used hydrophilic
interaction liquid chromatography (HILIC) [55,94–96]. These technologies enable the enrichment of intact glyco-
peptides, and in some cases different subsets of intact glycopeptides. The hydrazine coupling approach widely
used for N-glycopeptide enrichment [97–99] is not suitable for intact glycopeptide analysis, as the glycan

Figure 2. Example of an approach to integrate a representative glycoproteomics workflow into a multi-omics

study. Part 2 of 2

Glycoproteins are digested using proteases, and can be either directly analysed (label-free proteomics) or subjected to labelling

with, e.g. TMT-tags for quantitative glycoproteomics. Glycopeptide enrichment may be achieved by HILIC. Stage III: The

enriched glycopeptides found in the eluate and the non-glycosylated peptides in the flowthrough fractions can be analysed by

RP-nano-LC–ESI–MS/MS providing the data for Stage IV: Computational data analyses are performed using software tools

such as Proteome Discoverer™ (Thermo Scientific) coupled to for example Byonic™ (Protein Metrics International, PMI) for

protein and glycoprotein identification/quantitation. Stage V: Reporting and data sharing according to community guidelines

and recommendations ensure lasting impact of outcomes. Integration of all data streams delivers a comprehensive picture of

disease-associated effects for detection of diagnostic markers or therapeutic targets and for delivering novel fundamental

understanding of cell function.
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components remain covalently attached to the hydrazine beads. Peptides are enzymatically released using peptide
N-glycosidase F (PNGase F), inevitably leading to a loss of structural information of the formerly attached glycan
moiety. For more details on the many methods available for glycopeptide enrichment, the readers are referred to
several excellent reviews on this topic [35,42,100–104].
No enrichment strategy (or combinations thereof ) can quantitatively capture all glycopeptides in complex

mixtures, and enrichment also results in the loss of quantitative information on site occupancy levels. Thus,
compromises between selectivity and enrichment efficiency will have to be made based on the specific
experimental aims of a project.

How glycosidases can support a glycoproteomics experiment
N-glycans can be enzymatically removed using the hydrolytic enzyme PNGase F that efficiently cleaves between
the innermost GlcNAc residue of all types of N-glycans [105], unless these contain an α1–3 linked core fucose
residue as frequently found in plants and invertebrates [106], or are present in truncated forms (e.g. GlcNAc,
GlcNAc-Fuc) [107,108]. PNGase F has frequently been used after enrichment as a strategy to reduce sample
complexity and facilitate downstream proteomics analyses [109]. The enzymatic release of N-glycans by
PNGase F converts asparagine to aspartate, and care should be taken to avoid misinterpretation of this conver-
sion with the same mass increment (+0.98402 Da) induced by spontaneous deamidation that frequently occurs
on asparagine residues in an asparagine–glycine (…NG…) sequon [76,110,111]. The use of heavy water during
the PNGase F de-glycosylation reaction can introduce an 18O into the newly generated aspartate residue, and
be used to discriminate spontaneous deamidation from de-glycosylation of asparagine residues [112,113].
Applying de-glycosylation enzymes with different specificities can avoid such false positive identifications of

glycosylation sites while indirectly providing some limited, but still useful structural information. Combining
endo-β-N-acetylglucosaminidase (Endo) H (which only cleaves oligomannosidic type N-glycans between the
two GlcNAc residues of the chitobiose core, leaving a single GlcNAc attached to the glycopeptide) and PNGase
F, using 18O-labeling, Cao and co-workers screened and successfully quantified site occupancy levels on HIV
gp120 [64]. This approach enables relative quantitation of the macroheterogeneity since the resulting peptides,
de-glycosylated peptides and single GlcNAc carrying glycopeptides exhibit similar ionisation efficiencies [56].
In contrast with these endoglycosidases, exoglycosidases digest specific terminal monosaccharide residues

from glycans, providing an opportunity to gain insights into key structural features including biologically rele-
vant glyco-epitopes. Exoglycosidase-assisted glycopeptide analysis can be used to determine the level of e.g.
α2–3 linked NeuAc residues in a protein- and site-specific manner [114], or unambiguously determine the
presence of sialyl Lewis X epitopes on specific glycans attached to specific sites when performed on glycopep-
tides from isolated glycoproteins [115,116]. However, such strategies are still to be applied at the
glycoproteome-wide scale.

Glycopeptide labelling strategies can facilitate quantitation and glycopeptide
enrichment
Peptide labelling approaches such as tandem mass tags (TMT) [117–119] or isobaric tags for relative and abso-
lute quantification (iTRAQ) [120,121] have been successfully employed in quantitative glycoproteomics work-
flows [122–126]. TMT provides accurate relative MS2 (or MS3) -based quantitation and an opportunity for
multiplexing to reduce instrument time. Furthermore, it also improves the ET(hc)D fragmentation of glycopep-
tides by increasing the charge density of labelled glycopeptides [127]. TMT labelling strategies are easily
implementable into any clinical glycoproteomics workflow but add sample handling steps and increase costs.
Metabolic derivatization methods are available based on the incorporation of isotopically labelled amino

acids (e.g. SILAC) [128–130] (polypeptide-centric labelling) or the incorporation of non-natural monosacchar-
ides [131,132] (glycan-centric labelling) into glycoproteins produced by cultured cells. Monosaccharide-specific
click chemistry [133] has been leading the field, where monosaccharides modified with otherwise inert
azido-groups replace the natural monosaccharides occurring within the cell. These are eventually incorporated
into glycoconjugates and facilitate their enrichment and in situ visualisation. If used for enrichment, the glyco-
moiety is frequently removed from the peptide for subsequent de-glycosylated peptide analysis [134]. A limita-
tion of these strategies is the variable incorporation efficiency, often generating unlabelled glycoconjugates, as
well as the impact of the labelling conditions on cell growth and physiology. Importantly, these reagents have
been optimised with respect to applicability in vivo by significantly reducing their cellular toxicity [135]. Even
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though click chemistry metabolic labelling is a helpful tool for in vitro and animal model focussed glycoproteo-
mic studies [136], its implementation into clinical glycoproteomics in the foreseeable future is unlikely.
A variety of different labelling strategies have been developed for the characterisation of glycoprotein mix-

tures of low complexity. Generally, these aim to either increase ionisation efficiency and/or to stabilise specific
glycosylation features. Permethylation, a chemical derivatisation method, has been applied to glycopeptides
from isolated glycoproteins to obtain more detailed glycan structural information [137]. However, this modifi-
cation significantly increases the overall hydrophobicity of glycopeptides, which complicates their separation by
reversed phase (RP) chromatography, making them unsuited for glycoproteome-wide analysis. Other forms of
glycan derivatisation such as methylamidation have been successfully employed to derivatise and stabilise labile
sialic acid residues for MALDI-TOF based glycopeptide profiling [138]. A sialic acid labelling approach using
different stabilisation reagents can also be used to distinguish α2–3 from α2–6 linked sialic acid linkages at the
glycopeptide level [139].
While these derivatisation strategies have unique benefits, chemical modifications can lead to unexpected

reactions that unintentionally increase overall sample heterogeneity, subsequently affecting data analyses.
Hence, it is important to consider the benefits and limitations before including glycopeptide labelling in the
experimental design.

Stage 3: separation and identification of glycopeptides
Most glycoproteomics workflows use advanced online nano-scale separations such as nano-flow liquid chroma-
tography (nano-LC) or electrokinetic separation (e.g. capillary electrophoresis, CE) coupled with ESI–MS to
detect and characterise intact glycopeptides. The past decade has seen tremendous advancements in both off-
and online separation and detection technologies that have increased the sensitivity, accuracy and throughput
of glycoproteomics workflows [140,141]. It would go beyond this mini-review to provide a detailed account on
the many different aspects of MS-based glycopeptide separation and detection, hence here we are focussing on
a high-level overview of the most important advantages and challenges of widely used techniques. For more
details, we refer readers to recent literature on this topic [38–40,44,142].

MS-coupled separation techniques for glycoproteomics
In principle, any ultra- or high-performance liquid chromatography (UPLC/HPLC) based separation method
that can be performed using MS-compatible solvents can be used to separate complex glycopeptide mixtures
prior to MS analysis. RP-LC is without doubt the most widely used separation technique for this purpose due
to its unmatched peak capacity, versatility, simplicity and robustness [64,128,143]. A wide selection of different
RP materials is available, with a variety of additional separation functionalities, such as improved retention of
more hydrophilic compounds (such as glycopeptides) or better separation capacity resulting in reduced LC
peak width and thus improved MS signal intensities. In principle, the same LC conditions used for peptide
separation can also be employed for the separation of glycopeptides.
Glycopeptides are usually less hydrophobic than their non-glycosylated counterparts, and very hydrophilic

glycopeptides might not exhibit sufficient interaction with the RP-matrix when loading the sample in low
concentrations of organic solvent as it is commonly done in standard peptide RP-LC. Using pre- and analytical
columns optimised to work under completely aqueous conditions can help to capture such very hydrophilic
glycopeptides [57], particularly in the case of mucin-type glycopeptides where many sites of glycosylation can
be occupied within a single glycopeptide [144]. The loss of hydrophilic glycopeptides can also be minimised by
combining different stationary phases such as C18-RP and porous graphitized carbon (PGC), where the latter
captures hydrophilic glycopeptides from the RP flowthrough before glycopeptides from both columns are con-
secutively eluted for MS analyses [73].
Another attractive separation technique, though less widely used, is based on CE separation that can provide

excellent separation and sharp peaks with high signal-to-noise ratios [145,146]. CE offers the capacity to separ-
ate distinct glycoforms attached to peptides (e.g. linkage difference of sialic acids) based on their charge and
physical characteristics [147]. However, the online coupling of CE separation to MS instruments can be chal-
lenging due the limited number of MS-compatible electrolytes necessary for electromigration [148], and CE is
less frequently employed than LC. Recent advances have made CE-nanoESI systems commercially available.
While this separation strategy remains to be applied for system-wide glycoproteomics, its capacity to separate
glycans and glycopeptides of purified proteins has recently been shown [147,149,150].
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Nano-LC can alternatively be coupled with MALDI-TOF-MS detection, which has the advantage of having
the MS analyses decoupled from the LC step, facilitating the re-analyses of each spot at a later time if necessary.
This has found some applications for glycoprotein-centric analyses such as IgM [151], or chemically glycosy-
lated vaccine candidate glycoproteins such as cross-reactive material 197 (CRM197) [152]. While several publi-
cations describe this system for shotgun clinical proteomics (e.g. [153]), we are not aware of studies that have
used LC-MALDI-TOF-MS for glycoproteomics.
Ion-mobility MS (IM-MS) is a recent technology that shows promise for improved analysis of glycopeptides

[154,155]. IM-MS is a gas-phase separation method of ions based primarily on their mass and charge but also
their size and shape [156]. Given that glycopeptides are usually considerably larger and thus occur in higher
charge states than unglycosylated co-eluting peptides, IM-MS provides an opportunity to separate glycopeptides
from unglycosylated peptides within an online experiment using field asymmetric ion mobility spectrometry
(FAIMS) [157]. While these recent technology developments have not yet found widespread application in glyco-
proteomics [44], promising data have been published for the characterisation of isolated glycoproteins [158–160],
where IM-MS has been reported to be able to distinguish sialic acid linkage isomers (α2–3 or α2–6) from
otherwise isobaric glycopeptide precursors [161], and to enable characterisation of isomeric glycopeptides where
different sites on the same peptide are glycosylated [162].

Glycopeptide fragmentation — destructive approaches to decipher
glycoproteomes
Identification of glycopeptides from complex samples would be impossible without fragmentation techniques
optimised to deliver information on both the peptide and glycan moieties [163–165]. In combination with
MS analysers that acquire product ion spectra with high mass accuracy across a wide m/z range, the fragmen-
tation of glycopeptides may in favourable cases generate sufficient product ion information to facilitate
software-assisted identification [166,167]. Glycopeptide fragmentation is perhaps one of the most central
aspects within a glycoproteomics experiment, as it generates the fragment ‘fingerprint’ of a specific glycopep-
tide that is then used to determine the composition of the glycan and the sequence of the peptide.
Depending on the type of fragmentation, the site of glycosylation can also be determined from the same
product ion spectrum [39,168,169] (Table 1). Hybrid-type MS instruments (e.g. Orbitrap Tribrid) can
perform different fragmentation schemes in parallel [164] and excellent reviews have thoroughly discussed
the pros and cons of current fragmentation technologies [39,163,165]. Hence, the selection of the fragmenta-
tion scheme most suitable for each experiment is crucial to generate informative product ions of both the
peptide and glycan moieties. Here, we limit the discussion to the fragmentation technologies most commonly
used in glycoproteomics (Table 1).
Collision-induced dissociation (CID) techniques are often used in glycoproteomics but fundamentally differ

if performed on ion trap (resonance-type activation) or Q-ToF (beam-type activation) instruments. In prin-
ciple, both CID-types result largely in fragmentation of the glycan backbone but leave the peptide backbone
relatively intact when performed at lower excitation levels sufficient to fragment non-modified peptides
(Table 1).
Increasing the energy to achieve higher-energy collisional dissociation (HCD) may result in the generation of

sufficient peptide produced ions that facilitate peptide sequence assignment, next to glycan oxonium product
ions. Stepped-HCD (sHCD), where the fragmentation energies are being modulated from low to high, delivers
more balanced product ion spectra that usually contain more information on both the glycan and peptide
moiety of glycopeptides [166].
These fragmentation techniques rarely deliver reliable information on the site of glycan attachment, as

achieved by ion-induced dissociation techniques (e.g. electron-transfer dissociation (ETD), electron-capture dis-
sociation (ECD)) [41]. While in most cases these are not necessary for site assignment of N-glycopeptides due
to the well-known N-glycosylation sequon (N-X-S/T/C; X≠P) [111], these fragmentation methods become
really important when the modification site cannot readily be predicted, such as in O-glycosylation or chemical
glycosylation reactions [165]. Hybrid-type fragmentation techniques such as electron-transfer/higher-energy
collision dissociation (EThcD) can deliver informative product ions from both dissociation techniques [164].
However, EThcD takes more time to perform, limiting the cycle time and the overall number of product ion
spectra that can be generated within an LC–MS/MS experiment and might not always be necessary to address
the research question.
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Stage 4: data analyses and bioinformatics
Adequate software tools are the final key to successful glycoproteomics experiments. Different from many other
types of PTMs, which can be considered as a single mass value that is either present or absent on the polypep-
tide chain, glycan modifications can range from a single monosaccharide residue to complex oligo- and poly-
saccharides, posing unique bioinformatics challenges. Like proteomics, the glycoproteome search space needs to
be firstly appropriately defined. The current software for glycoproteomics differs in how the glycan search
space is defined and incorporated into the process of glycopeptide identification [170]. Some tools allow not
only the identification but also the relative or absolute quantitation of glycopeptides, and support annotation of

Table 1. Overview on the most common fragmentation techniques in glycoproteomics

Fragmentation
technique

Schematic
representation Important considerations

Ion Trap-based CID
Collision induced
dissociation

Good fragmentation of the glycan moiety but typically scarce
peptide fragmentation [39]
Typically used for glycan-composition determination
Commonly acquired using ion trap (resonance activation)

Beam-type CID and
HCD
Higher-energy collisional
dissociation

More informative ion spectra generated than ion trap CID.
At low energy levels, similar product ion as obtained in ion
trap-based CID.
Stepped collision energy HCD (sHCD) offers the advantage of
using low and high collision energies on the same precursor for
improved identification of the glycan and peptide [167,193–195].
At high energy levels, glycan information is largely limited to
oxonium ions and B-ions
Orbitrap c-trap [196], and Q-TOF (beam-type activation)
instruments [166]

ETD
Electron-transfer
dissociation

This fragmentation is very informative on the peptide sequence
[197] while leaving the glycan-moiety intact [127,169].
Ideal for peptide and glycan site identification
Commonly acquired on ion trap, FT-MS and orbitrap
instruments

EThcD
ETD/supplemental HCD

Hybrid fragmentation method that provides a supplemental
collision activation energy of the ETD reaction [164,198]. This is
beneficial in order to identify both the peptide backbone, the
glycan composition, and the glycan attachment site within a
single spectrum [199–204]
Available on Orbitrap Tribrid instruments

The choice of fragmentation scheme depends on (i) instrument availability, (ii) specific aims of an experiment and (iii) available sample amount. Each
technique has specific advantages and limitations that need to be balanced based on the individual project aims.
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Table 2. Examples for commonly used and recently developed software tools for glycopeptide data analysis (in alphabetical
order) Part 1 of 2

Software and access
Availability and integration
(current version*)

Glycopeptide search strategy and
key features

Compatible
file types

Byonic [205]
https://proteinmetrics.
com/byos/

Commercial
Regularly maintained and updated
Can run as a stand-alone MS/MS-based
search engine or as a node in Proteome
Discoverer v1.4 or higher (Thermo) or Byos
(PMI); [v4.0]
Released in 2013

De novo intact N- and O-glycopeptide
identification based on MS/MS data
Handles all common types of fragmentation
data but shows better performance for
high-resolution HCD- and EThcD-MS/MS data
Allows highly customisable searches
Users can select variable modifications and
glycan/protein search space
Outcomes and search times benefit from prior
knowledge of the sample investigated

Mgf
Thermo raw
mzML
mzXML

GlycoBinder [206]
https://github.com/
IvanSilbern/GlycoBinder

Freeware
Developed in R v3.5.00
Uses several (free) external tools, such as
pGlyco v2.0
Released Oct. 2020; [v1.0.0]

Integrated in SugarQuant MS pipeline
Allows quantification of TMT-labelled
glycopeptides using MS3 data
Combination of MS2 and MS3 scan data for
confident glycopeptide identification from
complex samples (reduced co-isolation of other
precursor glycopeptide ions)

Thermo raw

GlycoPAT [207]
https://virtualglycome.org/
glycopat

Freeware
Last update 2021
MATLAB v8.2 based
Released in 2017; [v2.0]

Considers peptide and glycan fragmentation to
calculate false discovery rate (FDR) scoring
Can handle CID-MS/MS and other types of
fragment data
Modular tool, allowing more control over all
phases of analysis, or integration of other tools
at any point

mzML
dta

GlyXtoolMS[208]
https://github.com/
glyXera/glyXtoolMS

Freeware
Developed in python v2.7
Released in 2018; [v2.0]

Modular tool, allowing control over all phases of
analysis
Allows filtering of spectra based on oxonium
ions
Suitable for analyses of moderately complex
samples
Open code allows further improvement of the
pipeline, e.g. calculating FDR or including
glycopeptide spectral matching, by modifying
current tools or implementing new ones

mzML

GPQuest [209]
https://www.
biomarkercenter.org/
gpquest

Freeware
Last update 2019
MATLAB based
Released in 2015; [v2.1]

N-glycopeptide analyses
Needs to use library of deglycopeptides to
perform identification
HCD glycopeptide spectra containing oxonium
ions are isolated before analyses, and
compared with the previously generated library
of glycosite-containing deglycopeptides
Glycan assignment made by mass difference

mzML

IQ-GPA (GlycoProteome
Analyzer) [210]
https://www.igpa.kr

Freeware
Web-based interface or desktop standalone
(Windows only)
Released in 2016; [v2.0]

N-glycopeptide analyses
Can handle HCD-/CID-/EThcD-MS/MS data
FDR calculation similar to GlycoPAT

Thermo or
Bruker raw

MetaMorpheus [211]
https://github.com/
smith-chem-wisc/
MetaMorpheus

Freeware
Released Oct. 2020; [v.0.0.317]

O-Pair search methodology allows to improve
site-specific identification, using paired HCD- and
EThcD-MS/MS spectra from LC–MS/MS data
Uses an ion-indexed search algorithm to improve
speed and sensitivity of O-glycopeptide analyses,
similar to MS-Fragger-Glyco
Accepts user O-glycan databases

Mgf
Thermo raw
mzML

Continued
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sites of glycosylation [170]. The reliability of the software-based data analysis, however, is strongly influenced
by the type and quality of the input data [166], the type of fragmentation method, and factors relating to the
search engine and output filtering [171].
A suite of computational tools has been developed over the past decade, which have strongly contributed to

the maturation and application of glycoproteomics (Table 2). While these informatics solutions have made
impressive progress as summarised in recent reviews [39,103,170,172–174], some challenges remain. A recent
inter-laboratory study conducted by the HUPO human glycoproteome initiative (HGI) to evaluate the perform-
ance of current software solutions and to identify high-performance search strategies for glycoproteomics data
analysis, identified several high-performance software solutions, and at the same time demonstrated the signifi-
cant informatics challenges that remain for glycopeptide data analyses — an important step forward to improve
glycoproteomics software performance [171]. We expect some exciting new developments in this space in the
coming years, supported by this and other community efforts [171,175,176] and the active integration of multi-
dimensional data from different -omics technologies [177] (Figure 2). In the authors’ experience, the ability to
incorporate glycomics data into the glycoproteomics workflow, coined as “glycomics-assisted glycoproteomics”,
is an example of a particular useful integration of multiple-omics data sets. These allow an informed definition
of the glycan search space whilst providing detailed information on the attached glycan structures
[79,126,129,141,178–180]. Notably, careful manual review of the data output is still needed to obtain reliable
and reproducible results in large-scale glycopeptide data analysis.

Stage 5: good reporting practice of glycoproteomics data
Data sharing and detailed reporting of MS-based glycoproteomics have become common practice [181,182],
providing an opportunity for independent community review and data re-interrogation, but also a valuable
resource for other researchers and software developers. However, with the increasing complexity and the enor-
mous amount of data collected within a single experiment, the lack of a detailed and accurate reporting of
experimental conditions limits the use by other scientists.

Table 2. Examples for commonly used and recently developed software tools for glycopeptide data analysis (in alphabetical
order) Part 2 of 2

Software and access
Availability and integration
(current version*)

Glycopeptide search strategy and
key features

Compatible
file types

MS-Fragger-Glyco [212]
https://msfragger.nesvilab.
org

Freeware (Academic) or Commercial
MSFragger can be used as a standalone
software or integrated in Proteome
Discoverer v2.2, 2.3 and 2.4
Released Nov. 2020; [v3.2]

Glycopeptide identification through open search
or mass-offset
Uses ion-indexed search algorithms adapted
specifically to the properties of glycans to
improve processing time as well as
glycopeptide annotation

mgf (limited
support)
mzXML
mzML

pGlyco [213]
http://pfind.ict.ac.cn/
software/pGlyco1505/

Freeware
Last update 2020
Released in 2016; [v2.2.2]

Identification and annotation of intact
N-glycopeptides which considers the glycan,
peptide, and glycopeptide quality
Limited to mammalian N-glycan search using
sHCD
pGlyco3 (in development) also allows to use
ETD-, EThcD- and ETciD-MS/MS spectra, and
introduces a new algorithm (pGlycoSite) to
locate glycosylation sites (https://github.com/
pFindStudio/pGlyco3/releases)

mgf

Protein Prospector [214]
https://prospector.ucsf.
edu/prospector/mshome.
htm

Freeware
Last update 2020
Web-based; [v6.2.2]

Identification of PTMs and modification sites
Particularly suited for identifying O-glycopeptide
sites using ET(hc)D-MS/MS data
Less user-friendly interface

Mgf
mzML

Important features of each software are briefly presented. Several software can be used to convert data, as in the case of generating mzML files using MSConvert included
in ProteoWizard [215].
*As of June 2021.
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This was recognised several years ago for proteomics and led to the development of essential reporting guide-
lines (MIAPE) [183]. These guidelines have set an important standard that needs to be followed when submitting
LC–MS/MS proteomics data to any of the data repositories under the ProteomeXchange consortium [182].
While many of the important experimental aspects for a glycoproteomics experiment are covered by the MIAPE
guidelines, several key aspects of the glycan moiety of glycopeptides require particular attention in the reporting
process. The Minimum Information Required for A Glycomics Experiment (MIRAGE) consortium has devel-
oped many guidelines (https://www.beilstein-institut.de/en/projects/mirage/) focussed on requirements for glyco-
mics experiments that also contain aspects relevant to MS-based glycoproteomics experiments [184–187]. These
guidelines are continuously being updated based on community feedback to facilitate the comprehensive report-
ing of glycomics experimental conditions, with dedicated glycoproteomics guidelines currently being drafted.
To facilitate sharing of glycomics and glycoproteomics data, the GlycoPOST (https://glycopost.glycosmos.

org/) platform has been established as a data repository that supports the storage of MS, LC and LC–MS glyco-
mics raw and analysed data, in addition to glycoproteomics data [188].
Several international efforts have been actively connecting glycomics and glycoproteomics data with other rele-

vant glycobiological information to make current glycoproteomics knowledge more accessible. Initiatives such as
Glyconnect (https://glyconnect.expasy.org/) [189], Glycomics@Expasy (www.expasy.org), GlyCosmos (https://
glycosmos.org/) [190] and GlyGen (https://www.glygen.org/) [191] (see also http://www.glyspace.org/ [192]) have
started to systematically curate glycoproteomics and glycomics data while linking information across each
platform. These communal efforts will significantly facilitate the integration of glycoproteomics data into
other -omics research resources.

Conclusion
This review provides a concise overview of the methods now available for glycoproteomics analyses, with the
intention to inform researchers that are new to the field, as well as experienced proteomics scientists that are con-
sidering jumping into the exciting wild waters of glycoproteomics. Glycoproteomics technologies have experienced
a tremendous evolution over the past two decades, starting from the profiling of single glycoproteins, to now
allowing large-scale system-wide analyses of complex samples as an integral part of multi-omics studies.
Transcriptomics of glycosylation pathway relevant enzymes informs on how these pathways could be affected
under studied conditions, metabolomics delivers important information on glycosylation precursors such as
nucleotide sugar substrates that, in concert with (glyco)lipidomics and proteoglycomics, proteomics, glycoproteo-
mics and genomics, can deliver a detailed picture of the highly interconnected cellular glycosylation pathways and
how these are affected in diseases (Figure 2). These exciting developments will undoubtedly lead to an increased
understanding of the function of glycoproteins in health and disease. It is also clear that these technologies are
opening a new era in glycoscience that will, in combination with the other -omics techniques, deliver previously
overlooked functional insights into the ubiquitous modification of proteins by glycans. Glycoproteomics analysis
is and will increasingly become an indispensable part of understanding the molecular basis of life.

Perspectives
• Glycoproteomics is becoming a powerful tool in glycobiology that enables the system-wide

mapping of protein-specific glycosylation features.

• Understanding of protein-specific glycosylation and how it is impacted in diseases provides
novel opportunities for precision diagnostics and therapies.

• Integration of glycoproteomics (and glycomics) into multi-omics studies is important to
capture the glyco-language of cells and organisms.
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