
Review Article

Roles for growth factors and mutations in
metastatic dissemination
Nishanth Belugali Nataraj, Ilaria Marrocco and Yosef Yarden
Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel

Correspondence: Yosef Yarden (yosef.yarden@weizmann.ac.il)

Cancer is initiated largely by specific cohorts of genetic aberrations, which are generated
by mutagens and often mimic active growth factor receptors, or downstream effectors.
Once initiated cells outgrow and attract blood vessels, a multi-step process, called
metastasis, disseminates cancer cells primarily through vascular routes. The major steps
of the metastatic cascade comprise intravasation into blood vessels, circulation as single
or collectives of cells, and eventual colonization of distant organs. Herein, we consider
metastasis as a multi-step process that seized principles and molecular players employed
by physiological processes, such as tissue regeneration and migration of neural crest
progenitors. Our discussion contrasts the irreversible nature of mutagenesis, which
establishes primary tumors, and the reversible epigenetic processes (e.g. epithelial–
mesenchymal transition) underlying the establishment of micro-metastases and second-
ary tumors. Interestingly, analyses of sequencing data from untreated metastases inferred
depletion of putative driver mutations among metastases, in line with the pivotal role
played by growth factors and epigenetic processes in metastasis. Conceivably, driver
mutations may not confer the same advantage in the microenvironment of the primary
tumor and of the colonization site, hence phenotypic plasticity rather than rigid cellular
states hardwired by mutations becomes advantageous during metastasis. We review the
latest reported examples of growth factors harnessed by the metastatic cascade, with
the goal of identifying opportunities for anti-metastasis interventions. In summary,
because the overwhelming majority of cancer-associated deaths are caused by meta-
static disease, understanding the complexity of metastasis, especially the roles played by
growth factors, is vital for preventing, diagnosing and treating metastasis.

Introduction
The overwhelming majority of cancer-associated deaths (>90%) are caused by metastatic disease,
rather than the respective primary tumors [1,2]. Hence, understanding the complexity of this process
is vital for optimizing the treatment of patients with advanced malignancies. Already in 1889, Stephen
Paget proposed that metastasis depends on cross-talk between cancer cells (the ‘seeds’) and specific
organ microenvironments (the ‘soil’). However, despite intensive and prolonged research, the multi-
step process of metastasis (often called the ‘invasion-metastasis cascade’ [3]) (Figure 1) remains
poorly understood. This is in sharp contrast with the preceding steps of cancer progression, such as
tumor initiation and primary tumor growth. Stated differently, while it is clear that somatically
acquired ‘driver’ mutations, which affect oncogenes or tumor suppressor genes, propel the initial steps
of malignancy, and their stepwise accumulation dictates the pace of tumor progression [4], the effects
of genome aberration on metastasis appear less prominent. Instead, studies performed in the last two
decades have highlighted control by epigenetic and other reversible processes, such as epithelial–mes-
enchymal transition (EMT), chemotaxis and a plethora of reciprocal (paracrine) cell-to-cell interac-
tions regulated by soluble factors [5]. Herein, we consider the metastasis cascade as a multi-step
process that seized the major principles and main molecular players employed by physiological rather
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than pathological processes. Such processes include reactions underlying tissue regeneration in wound healing
and migration of neural crest (NC) progenitors in development. Our discussion is most relevant to the metasta-
sis of carcinomas, which account for the majority of cancer mortality. We conclude by contrasting the irrevers-
ible nature of mutagenesis, which establishes primary tumors, and the phenotypically plastic and reversible
processes underlying the establishment of micro-metastases and secondary tumors.

Principles borrowed from tissue regeneration
The major steps of the metastasis cascade comprise dissemination of cancer cells from the tumor of origin, sub-
sequent intravasation into blood and lymph vessels, and eventual colonization of distant organs. Thus, the
opening steps require breaching the basement membrane, which underlies large clusters of initiated cancer cells
harboring pioneer mutations. Prior to this step, the primary tumor is considered a non-malignant lesion. For
example, ductal carcinoma in situ (DCIS) is non-invasive breast cancer that encompasses a wide spectrum of
diseases [6]. DCIS is characterized histologically by the rapid proliferation of initiated epithelial cells that are
still bounded by the basement membrane of the breast ducts. Once epithelial integrity breaks and the under-
lying basement membrane is damaged, the surrounding tissue responds by activating a regenerative cascade
analogous to the reaction of the skin to mechanical damage. A well-characterized marker of damaged epithelial
progenitors is L1CAM, which is required for regeneration of the epithelium and whose abundance in primary
tumors is associated with poor disease outcome [7]. Natural wound healing proceeds through several phases
involving an inflammatory response and associated cellular migration, proliferation, matrix deposition and
tissue remodeling [8]. Activin and other members of the transforming growth factor beta (TGF-b) family play
pivotal roles in both wound healing and cancer progression [9]. These processes are enabled, in part, by the
ability of activin to control fibroblast proliferation and migration, as well as regulate the production of extracel-
lular matrix (ECM) proteins and collagen cross-linking. In addition to fibroblasts and keratinocytes, macro-
phages, neutrophils and platelets are attracted to the wound and secrete EGF, VEGF, IL-1 and TGF-b, among
other cytokines. In a similar way, the reactive stroma of invasive carcinomas releases various signals and dis-
plays markers of immune responses, as well as hypoxic responses [10]. As an outcome of hypoxia, blood
vessels are attracted to invasive clusters of cells, such that angiogenesis is a major hallmark shared by both
advanced tumors and deep wounds.

Subversion of progenitor migration during embryogenesis
Although hematogenous dissemination of cancer cells migrating within vascular channels is the best-studied
route of metastatic dissemination, alternative pathways of distant colonization exist, but their research is ham-
pered by technical issues. For example, cancer cells can migrate along nerves in a process called perineural
invasion, which requires neoplastic invasion of nerves. The presence of cancer cells in the perineurium has
been associated with poor prognosis, metastasis to lymph nodes and high recurrence of colorectal and other
tumors [11,12]. Similarly, the abluminal surface of lymphatic and blood vessels (angiotropism) enables the
spread of melanoma via extravascular migratory routes, while avoiding intravasation into vascular routes [13].
A recent report made use of an oncogenic BRAF mutation in mice with transgenic HGF overexpression and an
oncogenic CDK4 germline mutation [14]. Interestingly, the authors reported that HGF–MET signaling and
oncogenic BRAF can collaborate by enhancing angiotropic growth at the invasive front of primary tumors and
in metastatic lesions of the lung. Notably, both perineural invasion and the extravascular migratory route avoid
the shear force experienced by tumor cells, which is characteristic to hematogenous dissemination.
Unlike hematogenous dissemination, extravascular migration of embryonic progenitors widely occurs in

morphogenesis. Perhaps the best understood and the one most relevant to metastasis is the migration of NC
cells in the developing embryo [15]. The NC is a highly migratory embryonic cell population that develops into
numerous cell lineages, including melanocytes, smooth muscles, neurons and the craniofacial mesenchyme.
Importantly, NC cells migrate along well-defined routes in the developing embryo and display an enormous
ability to invade tissues and organs. After the NC forms along the border of the neural plate, NC cells undergo
EMT, whereby polarized epithelial cells lose adhesion and adopt mesenchymal morphologies in preparation for
migration [16]. Many of the processes underlying the formation and migration of NC cells can also play critical
roles in cancer progression [17]. For example, both NC cells and circulating tumor cells (CTCs) form loosely
associated collectives and use both guidance cues and the local ECM to collectively migrate. In breast cancer,
collective invasion represents the predominant invasion mode and associates with distant metastasis [18]. The
use of mouse models with tagged mammary tumors provided important insights: although rare in the
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circulation compared with single CTCs, CTC clusters have up to 50-fold increased metastatic potential [19].
These studies also identified the cell junction component plakoglobin as highly differentially expressed, such
that knockdown of plakoglobin abrogated CTC cluster formation and suppressed lung metastases.

Cell-to-cell interactions while CTCs are traveling in the
circulation
While in transit, CTCs are vulnerable to immune attacks, hydrodynamic flow and shear stress, but interactions
with specific cells, especially platelets, neutrophils, monocytes and endothelial cells, might support their survival
and facilitate eventual extravasation [1]. First noted by the French physician Armand Trousseau, increased inci-
dence of venous thrombosis associated with certain cancers (Trousseau’s syndrome) [20]. The molecular basis

Figure 1. Schematic model of the metastatic spread of cancer cells.

Primary tumor cells are embedded in a microenvironment comprising stromal cells, such as cancer-associated fibroblasts (CAFs), myeloid-derived

suppressor cells (MDSC), dendritic cells (DCs), natural killer (NK) cells, T cells, tumor-associated macrophages (TAMs), neutrophils, along with blood

vessels. Shedding of tumor cells and their invasion across tissue barriers permit establishment of circulating tumor cells (CTCs) and complete the

process called intravasation. While in blood vessels, CTC clusters and solitary cells are protected by platelets and neutrophils, which facilitate

extravasation. Tumor-secreted soluble factors, tumor-shed extracellular vesicles (exosomes) and bone marrow-derived cells (BMDCs) co-operate to

form the pre-metastatic niche. Micro-metastases often experience a variable length dormancy phase, which might lead to cancer cell death. An

angiogenic switch can initiate outgrowth and formation of secondary tumors. Growth factors (shown as red dots) and cytokines involved in each

step of the cascade are indicated in the corresponding boxes. The abbreviations used are: CCL2, C-C motif chemokine ligand 2; CXCL12, C-X-C

motif chemokine ligand 12; EGF, epidermal growth factor; FGF, fibroblast growth factor; HB-EGF, heparin-binding EGF-like growth factor; HGF,

hepatocyte growth factor; IGF, insulin like growth factor; PDGF, platelet-derived growth factor; PIGF, placental growth factor; TGFβ, transforming

growth factor beta; VEGF, vascular endothelial growth factor; WNTs, Wnt family members.
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of Trousseau’s syndrome has been attributed to the ability of platelets to protect tumor cells in circulation from
the normal immune response or natural killer cells [21]. In addition, platelet-derived lysophosphatidic acid
(LPA) can support and activate metastatic breast cancer cells, as well as stimulate the release from cancer cells
of interleukin-6 and interleukin-8, leading to bone destruction and further supporting metastatic growth [22].
Of note, LPA is a natural bioactive lipid with growth factor-like functions due to activation of a series of six G
protein-coupled receptors (LPA1–6). LPA receptor type 1 (LPA1) signaling has been associated with the
up-regulation of heparin-binding EGF-like growth factor (HB-EGF) [23]. Accordingly, analysis of primary
tumors of a large cohort of breast cancer patients found a significantly higher expression of HB-EGF in breast
tumors expressing high levels of LPA1. These results raise the possibility of using anti-HB-EGF antibodies or
LPA1 antagonists to inhibit metastasis.
Although neutrophils — the most abundant leukocytes in human blood — can kill disseminated cancer cells

under certain conditions, CTCs can recruit neutrophils to promote metastasis. For instance, neutrophils can
enhance the extravasation of tumor cells, mainly through the secretion of matrix metalloproteinases [24]. One
way enabling neutrophils to kill harmful microorganisms entails the formation of neutrophil extracellular traps
(NETs), which are DNA meshes released into the extracellular space, where they trap microorganisms. NETs
form in human pancreatic, liver and gastric cancer, as well as within the vasculature. In animal models,
NET-like structures form around metastatic cells and stimulate the invasion and migration of breast cancer
cells, implying that induction of NETs by cancer cells promotes metastasis [25]. Importantly, G-CSF, a key
regulator of neutrophil production and a potent mobilizer of haemopoietic stem cells, emerged as a critical
factor in the induction of NETs by cancer cells.

Cancer cell extravasation
Cancer cell extravasation usually occurs in small capillaries, where CTCs are physically trapped by size restric-
tion. Once pressed into small capillaries, CTCs are deformed and undergo mechanical stress that is responsible
for the loss of up to 90% of cancer cells entering small vessels [26]. Nevertheless, subsets of cancer cells eventu-
ally infiltrate the parenchyma of organs to seed metastatic colonies. The underlying process, termed transen-
dothelial migration (TEM), depends on disruptors of vascular integrity, such as VEGF, metalloproteinases and
many pairs of ligand–receptor molecules, such as selectins, integrins, cadherins and CD44. In addition, a dis-
tinct population of host macrophages is recruited to metastatic cells and enables efficient tumor cell extravasa-
tion [27]. Several studies revealed that local death of endothelial cells can enhance extravasation, for example
by means of ATP released by dying cells. It has been shown that the release of ATP can enhance the survival
of tumor cells in the face of mechanical stress [28]. Interestingly, human and murine tumor cells induce pro-
grammed necrosis (necroptosis) of endothelial cells, which promotes tumor cell extravasation and metastasis
[29]. Unexpectedly, tumor-cell-induced endothelial necroptosis requires amyloid precursor protein expressed
by tumor cells and its receptor, death receptor 6 (DR6), on endothelial cells, as the primary mediators of
necroptotic signaling.

Organ-specific metastatic potential and the pre-metastatic
niche
It is widely accepted that metastasis is an inefficient process whereby the vast majority of CTCs are not able to
survive and proliferate at distant sites. In addition, metastatic cells often display tissue and organ tropism, in a
way that cannot be explained by circulatory patterns. Whether or not organ-specific metastasis potential is
driven by the accumulation of genetic mutations or by epigenetic events, such as up-regulation of adhesion
molecules or other factors, remains unclear [3]. For example, breast cancer metastases frequently colonize the
bone and the lung, and less frequently the liver and brain. By means of sequential isolation of isogenic
mammary tumor cells that preferentially infiltrate the brain, it became clear that cell-surface glycosylation dic-
tates organ-specific metastatic interactions [30]. Along with other genes, HB-EGF emerged from this study as
an enhancer of brain metastasis, as opposed to metastasis to liver or lymph nodes. Interestingly, another EGFR
ligand, epiregulin, was found to be included in an 18-gene lung metastasis signature [31]. According to an
alternative view, a favorable microenvironment, called the pre-metastatic niche (PMN), located in an organ
distant from a primary tumor, is critical for tumor metastasis and target tissue selection. PMN establishment
requires both extracellular vesicles (exosomes) [32] and bone marrow-derived haematopoietic progenitor cells.
The latter cells express vascular endothelial growth factor receptor 1 (VEGFR1/Flt1) and form cellular clusters
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before the arrival of tumor cells [33]. In addition to bone marrow-derived cells, cancer-derived factors, and
ECM, a host of growth factors and pro-inflammatory cytokines are involved [34]. The list includes VEGF,
WNT ligands, interleukin (IL)-6, IL-1β, CC-chemokine ligand 2 (CCL2), granulocyte-colony-stimulating factor
(G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), stromal cell-derived factor (SDF)-1,
macrophage migration inhibitory factor (MIF) and Chemokine (C-X-C motif ) ligand 1 (CXCL1; see boxes in
Figure 1).

Metastasis-driving genetic aberrations versus phenotypic
plasticity
In accord with the large contribution of metastasis to the incidence of oncology-related deaths, it has been
reported that predictors of cellular migration, rather than proliferation of breast cancer cells, are strongly asso-
ciated with patient survival [35]. Surprisingly, however, only very few driver mutations have been directly
linked to the metastatic cascade. For example, a recent screen aimed at putative driver mutations escalating the
risk of metastasis identified three mutations in nucleoporin 93 (NUP93), a component of nuclear core com-
plexes [36], which is involved in 3D migration and reorganization of the actin cytoskeleton [37]. Guided by the
principle that cancer, including metastasis, involves the evolution of malignant cells attempting to survive
under the stresses of tumor progression [38], larger-scale surveys of cancer genomics have tried identifying pro-
metastatic mutations [2]. Apparently, there are two general scenarios of metastatic dissemination, and both
have been supported by genome-wide analyses: In the linear progression model, the metastasis-competent
clone arises late in tumorigenesis and disseminates just before clinical detection of the primary lesion. Hence,
the expected genetic divergence between the primary tumor and its metastasis (termed P-M genetic divergence)
might be rather limited [38]. In the parallel progression model, the metastatic clone disseminates from the
primary tumor early on, and both the primary tumor and the metastases continue to evolve in parallel. As a
result, the P-M genetic divergence might be substantial. Sampling and exposure to systemic therapy might con-
found the inference of the exact mode of metastatic spread, especially because therapy frequently associates
with adaptive mutagenesis [39]. To circumvent this, Reiter and colleagues analyzed sequencing data from
untreated metastases and inferred cancer phylogenies [40]. Their analyses unveiled depletion of putative driver
mutations among metastases, and the majority of those that were observed had only weak or no predicted func-
tional effects. These observations are consistent with the ‘Big Bang’ model proposed by Christina Curtis and
colleagues [41]. Accordingly, tumors grow predominantly as a single expansion producing many subclones that
are not subject to stringent selection, and where both clonal and subclonal alterations arise early during
growth.

Roles for EMT, MET and other epigenetic switches in
metastasis
Several reasons might explain why inter-metastatic heterogeneity is relatively low, while paracrine loops involv-
ing growth factors are widespread. For one, under certain conditions, disseminated cancer cells enter prolifera-
tive quiescence, such that the tumor becomes dormant (e.g. due to failure to activate angiogenesis). In
addition, driver gene mutations may not confer the same advantage in the microenvironment of the primary
tumor and of a distant site. Stated differently, phenotypic plasticity and epigenetic events, rather than rigid cel-
lular states hardwired by mutations, might become advantageous at the late stages of tumor progression. The
metastasis cascade provides several examples of reversible changes. While the invasion and dissemination steps
during carcinoma progression have been associated with EMT, the reverse process — mesenchymal-epithelial
transition (MET) — likely propels the outgrowth of cancer cells once they settled at distant sites. For example,
repression of the EMT inducer Prrx1 is essential for metastatic colonization [42]. In similarity, activation of
another EMT-inducing transcription factor, Twist1, is sufficient for stimulating carcinoma cells to undergo
EMT. However, reversion of this process is essential for the proliferation of disseminating tumor cells at distant
organs [43]. Notably, whether or not EMT is obligatory for metastasis remains a longstanding source of debate.
For instance, inhibiting EMT by overexpressing the microRNA 200 did not affect spontaneous breast-to-lung
metastasis [44], and mouse models of pancreatic ductal adenocarcinoma (PDAC) with deletion of Snail or
Twist did not alter systemic dissemination or metastasis [45]. This might be explained by the transient nature
of EMT or by the existence of a novel metastasis program, a possibility raised by experiments that made use of
mesenchymal cell reporter mice and a PDAC model [46].
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Viewed from a slightly different angle, emerging data show that EMT comprises a spectrum of intermediate
states, coined as hybrid or partial EMT. Hybrid EMT cells exhibit high tumorigenic properties, leading to stem-
ness and therapy resistance [47]. Therefore, it has been argued that these cells are more prone to colonize
distant organs. Using a lineage-labeled mouse model of PDAC, Aiello et al. [48] studied EMT in vivo and
reported that most tumors lose their epithelial phenotype to acquire the ‘partial EMT’ phenotype . Importantly,
carcinoma cells utilizing this program migrate as clusters, which contrast with the single-cell migration pattern
associated with EMT mechanisms. According to another report, adherens junctions and the EMT–MET inter-
conversion play roles in metastatic organotropism of pancreatic cancer [49]. Furthermore, it has been observed
that loss of FAT1, which encodes a protocadherin, increased tumor stemness and spontaneous metastasis,
through the induction of a hybrid EMT state [50].
In conclusion, reversible EMT appears essential for tumor metastasis. Cellular plasticity extends to tumor-

initiating stem cells and the ability to form metastases. For instance, hyperactivation of the WNT signaling
pathway turns intestinal LGR5+ cells into tumor-initiating cancer stem cells (CSCs), but the cells that dissemin-
ate from the primary tumor and seed liver metastasis in mouse models are predominantly LGR5– [51]. Still,
once established in the liver, some proliferating metastatic cells re-acquire LGR5 expression. Apart from WNT,
this pathway might be activated by EGF family growth factors [52] and other growth factors capable of stimu-
lating SMAD3 [53], which demonstrates the versatility and plasticity of LGR5 induction and the metastatic
cascade. To exemplify the scope and variety of the contribution of epigenetic switches and soluble factors to
metastasis, below we describe several recent examples and provide a longer list of growth factors in Table 1.

Diverse mechanisms enable regulation of metastasis by
growth factors
Growth factors regulate the biochemistry and mechanics of metastasis
Several actin-filled protrusions facilitate migration and invasion of cancer cells. They include lamellipodia and
filopodia at the leading edge, and invadopodia facilitating invasion through the epithelium and basal membrane
[54]. Invasion across tissue barriers requires cell softening, which is, surprisingly, preceded by transient accu-
mulation of actin stress fibers and cell stiffening [55]. Invadopodia formation is regulated by growth factors and
signals from the ECM [56,57]. Growth factor- and oncogene-activated cells are characterized by active PI3K
(phosphoinositol 3-kinase) and elevated levels of the phosphoinositol lipid PI(3,4,5)P3. Dephosphorylation of
this lipid by 50-phosphatases, such as synaptojanin 2 (SYNJ2), generates PI(3,4)P2, which recruits to the plasma
membrane an adaptor, TKS5, necessary for the nucleation of invadopodia. SYNJ2 is transcriptionally
up-regulated on the treatment of mammary cells with EGF. In addition, SYNJ2 is encoded at 6q25, a chromo-
somal locus amplified in aggressive forms of breast cancer [58]. In line with this, several reports linked SYNJ2
to invasiveness of glioma and other cancer cells. Normally, two tumor suppressor phosphatases, PTEN and
INPP4B, deplete PI(3,4)P2 [59] and balance the oncogenic alliance formed by PI3K and SYNJ2. In summary,
by regulating inositol lipids and the actin cytoskeleton, growth factors can enhance invasiveness during both
intravasation and extravasation.

Clustering of CTCs is enhanced by growth factors
Clustering of CTCs confers an advantage in terms of successful colonization of distant organs, but the under-
lying mechanisms are incompletely understood. CTC aggregation depends on cell-to-cell adhesion molecules,
such as plakoglobin, CD44 and E-cadherin [19]. According to a recent report, CTCs switch between prolifera-
tive and migratory states based on the concentration of a growth factor, epigen, found in nanoscale intercellular
compartments present within the clusters [60]. Initially, when applying RNA-seq on tumor cells of different
aggregation conditions, the authors found that epigen (along with amphiregulin) was the most induced gene
upon tumor cell clustering. Furthermore, depletion of epigen using RNA interference indicated that this growth
factor is not required for cell clustering but it might support metastatic outgrowth. Further analyses showed
that epigen, a low-affinity ligand of EGFR, was highly concentrated in intercellular sealed cavities. Interestingly,
similar principles might permit another family of growth factors to control morphogenesis during embryonic
development: Durdu et al. [61] provided evidence for a model in which diffusible signals in the form of fibro-
blast growth factors (FGFs) are controlled by trapping FGF molecules within small, closed extracellular spaces
(termed microlumina), from which they have access to only a discrete collection of cells. Future studies might
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Table 1. Roles for the major growth factors in metastasis Part 1 of 3

GF family Receptors Roles in metastasis

EGF and
NRG

EGF

TGFα

NRG 1-4

AREG

EREG

HB-EGF

EPIGEN

EGFR, HER2, HER3,
HER4

Constitutive activation and overexpression of ERBB/HER receptors are correlated with
poor prognosis, drug resistance, cancer metastasis, and shorter patient survival rates in
several types of cancer [69,70].
• EGF secreted by M2-like TAMs suppresses lncRNA LIMT expression via activating EGFR-ERK
signaling pathway to promote ovarian cancer metastasis [71].

• HER2 and EGFR promote prostate cancer metastasis to bone [72].
• TFCP2 induces TNBC progression via a positive feedback loop comprising EGF/TGFα and the
AKT signaling axis [73].

• A TNFα-TGFα-EGFR interacting loop between tumor and stromal cells promotes peritoneal
metastasis of ovarian cancer [74].

• Cross-talk between the Hippo–YAP pathway and the heterodimer kinase complex formed by
ROR1 with HER3 promotes breast cancer bone metastasis in a lncRNA-dependent manner [75].

• NRG1-HER4-YAP signaling contributes to migration of breast cancer cells [76].
• NRG1 in luminal breast cancer defines pro-fibrotic and migratory CAFs [77].
• Tumor microenvironment-derived NRG1 promotes antiandrogen resistance in prostate cancer [78].
• AREG/EGFR signaling enhances the suppressive function of Treg cells and promotes tumor
metastasis [79].

• AREG overexpression induces a phenotypic switch from malignant ascites to solid metastatic
phenotype in a cell clone obtained from a patient derived-ovarian cancer model [80].

• Autocrine epiregulin contributes to lung metastasis via EMT in salivary adenoid cystic carcinoma
through activation of EGFR [81].

• EREG is essential for transformation of fibroblasts to CAFs, which is required to induce EMT and
invasion via the JAK2-STAT3 pathway in OSCC [82].

• Inhibition of the HB-EGF/EGFR pathway using peptides inhibited HB-EGF-induced ovarian cancer
cell migration and invasion [83].

• Tumor cell clusters produce epigen, which controls switching between collective migratory and
proliferative modes. Epigen knockdown strongly reduces metastatic outgrowth [60].

TGF-β

TGF-β1-3

BMPs

TGF-βR1,2 TGF-β plays a dual role during tumorigenesis; in early stages of carcinogenesis, it induces
growth inhibition, but in the late stages it promotes cancer progression and metastasis,
due to its ability to dedifferentiate many cell types, suppress immune cell development and
indirectly allow vascular growth [84,85].
• TGF-β and MMPs produced by myeloid cells in advanced-stage cancer inhibit antitumor immune
reactions and promote
metastasis [86].

• By repressing the expression of miR-211, adipocytes sensitize melanoma cells to TGF-β signaling,
leading to a switch from a proliferative to an invasive phenotype [87].

• EGFR, AP-1, p63, and TGF-β co-operate to promote invasiveness of breast cancers [88].
• TGF-β-induced DACT1 biomolecular condensates repress WNT signaling to promote bone
metastasis [89].

• Activation of the canonical BMP4-SMAD7 signaling pathway blocks breast cancer metastasis [90].

VEGF

VEGF-A

VEGF-B
VEGF-C

VEGF-D

VEGFR1-3 VEGFs plays a role in tumor-associated angiogenesis, tissue infiltration, and metastasis
formation [91,92].
• VEGF-A secreted by primary tumors causes vascular hyperpermeability in pre-metastatic lung via
the occludin phosphorylation/ubiquitination pathway [93].

• Suspending anti-VEGF therapy induces metastasis through a liver revascularization mechanism
[94].

• VEGF-A expression promotes fibrosarcoma metastasis [95].
• VEGF-B promotes cancer metastasis through the remodeling of tumor microvasculature [96].
• VEGF-C and FGF-2, collaboratively promote angiogenesis, lymphangiogenesis and lymph-node
metastases [97].

• By inducing EMT, epithelial breast cancer cell cross-talk, VEGF-C promotes tumor growth and
metastasis [98].

• VEGF-C up-regulation induced by c-MYC promotes lymphatic metastasis of pancreatic
neuroendocrine tumors [99].

• Breast cancer cell subclones expressing IL-11 and FIGF (VEGF-D) promote formation of polyclonal
metastases composed of driver and neutral subclones [100].

Continued
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Table 1. Roles for the major growth factors in metastasis Part 2 of 3

GF family Receptors Roles in metastasis

IGF

IGF1

IGF2

IGF1R, IGF2R IGF signaling promotes cancer progression by affecting tumorigenesis, metastasis and
resistance to cancer therapies [101,102].
• CAF-derived IGF-1 primes breast cancer cells for bone metastasis [103].
• CAFs induce invasion of PDAC cells through paracrine IGF1/IGF1R signaling [104].
• NDRG1 inhibits PSC-CM-induced migration of PaCa via inhibition of HGF/c-MET, IGF-1/IGF-1R
signaling [105].

• IGF2 secreted by pericyte promotes formation of breast cancer brain metastasis [65].

HGF
HGF

MET, RON HGF/MET signaling promotes EMT and cancer invasiveness [106].
• Inhibition of HGF and MET together with chemotherapy prevented metastasis in a model of PaCa [107].
• HGF/MET controls EMT and metastasis via FOSL2 in NSCLC [108].
• HGF-mediated cross-talk between CAFs and gastric cancer cells activates metastasis [109].
• Breast cancer cells with high metastatic potential are hypersensitive to HGF secreted by macrophages
[110].

• MET signaling activates an inflammatory microenvironment in the brain and facilitates breast cancer
metastasis to the brain [111].

FGF

FGF 1-23

FGFR1-4 FGFs are considered cancer drivers for their ability to regulate angiogenesis, cell
proliferation and metastasis [112,113].
• Loss of TGF-β signaling in osteoblasts increases basic FGF to promote bone metastases in an
animal prostate cancer model [114].

• Activation of FGF2/FGFR1 promotes cell proliferation, EMT and metastasis in FGFR1-amplified lung
cancer via the FGFR1-ERK1/2-SOX2 axis [115].

• Collective migration of parapineal cells is mediated by FGF signaling [116].

PDGF

PDGF-AA
PDGF-BB
PDGF-CC

PDGF-DD
PDGF-A/B

PDGFRα,β By regulating mesenchymal cells such as fibroblasts, pericytes and smooth muscle cells,
PDGFs and their receptors can promote tumor metastasis [117,118].
• Loss of miRNA let-7d and gain of HIF1 activity promote breast cancer brain metastasis via PDGF;
inhibition of PDGFR suppresses brain metastasis [119].

• In pericytes and stromal fibroblasts, the PDGF-BB-PDGFRβ-IL-33-ST2 axis recruits TAMs and
induces metastasis [120].

• PDGF-C secreted by CAFs promotes GIST growth and metastasis [121].
• PDGF-BB induces pericyte-fibroblast transition (PFT), contributing to tumor invasion and
metastasis [122].

CSF1
(M-CSF)

CSF1R CSF1/CSF1R signaling indirectly promotes tumor progression by regulating the functions of
macrophages, or directly, by promoting release of inflammatory mediators from tumor cells
[123].
• Co-overexpression of TWIST1 and CSF1 promotes OSCC invasiveness [124].
• The Oct4/CSF1 axis promotes M2 macrophage polarization, leading to lung cancer growth and
metastasis [125].

• miR-149 acts as a metastasis-suppressing microRNA in breast cancer cells by reducing
recruitment and M2-polarization of macrophages induced by CSF1 [126].

WNT FZDs
Co-receptors:
LRP 5/6
Ryk
ROR 1/2

Both canonical and non-canonical WNT pathways in the tumor microenvironment contribute to
EMT, metastasis and cancer stem cell maintenance in lung, colorectal and breast cancers
[127].
• The WNT pathway acts as a driver of bone metastatic invasion of prostate cancer [128].
• The canonical WNT/β-catenin/Slug pathway contributes to cancer cell invasion and lymph-node
metastasis of HNSCC [129].

• Autocrine WNT7b plays a role in CRC metastasis by promoting EMT through the WNT/β-catenin
signaling pathway [130].

CXCL12 CXCR4 The CXCL12/CXCR4 axis regulates metastasis via different mechanisms (e.g. EMT and
up-regulation of metalloproteinases) in several cancers, including pancreatic, colon and
melanoma [131,132].
• The CXCR4-LASP1 axis enhances the stability of nuclear Snail1, to promote invasion of TNBC
cells [133].

• CXCL12/CXCR4 promotes invasion of ovarian cancer cells by means of suppressing ARHGAP10
expression [134].

• CXCR4 signaling promotes the interaction between tumor cells and neutrophils, to regulate onset
of metastasis [135].

Continued
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resolve the question whether or not collectives of CTCs harness a developmental principle to gain improved
colonization.

Loss of imprinting underlays driver roles of IGF2 in ileal neuroendocrine
tumors
A recent, small intestine cancer study, provides an example of epigenetic regulation of metastasis (i.e. gene
silencing). Ileal neuroendocrine tumors (I-NETs), which affect the distal portion of the small intestine, usually
progress slowly, but they have often metastasized to the liver by the time the patient presents [62]. Due to
robust and extensive metastasis, some patients with advanced I-NET undergo liver transplantation. The genetic
driver of this disease has long remained a mystery. The overall frequency of mutations in I-NETs is rather low
and I-NETs have no known mutations in oncogenes or tumor suppressor genes. Although no animal models
of I-NETs have been available, the transgenic RT2 system [63], originally developed as a model of insulinomas,
can model different NET subtypes if the genetic background is changed. It has recently been shown that RT2
mice can develop I-NETs on a specific genetic background. Analysis of this first I-NET animal model allowed
identification of the insulin-like growth factor 2 (IGF2) as the first I-NET driver gene [64]. Elevated serum
IGF2 is associated with an increased risk of developing various cancers, including colorectal. IGF2, as well as
the receptor, IGF2R, is one of a relatively small number of imprinted genes in mammals. Thus, due to maternal
imprinting, IGF2 is typically expressed from the paternal allele only. I-NETs generated by transgenic RT2 mice
depended upon genetic background and displayed loss of imprinting (LOI) [64]. As would be expected, LOI
correlated with increased IGF2 transcription in the tumors of 57% of patients with I-NET. In summary, IGF2
appears to be the first genetic driver of the highly metastatic but mutation-poor I-NET tumors. Importantly,
LOI is expected to only double IGF2 concentrations, but this might be sufficient for tumorigenesis, which
underscores the importance of growth factor homeostasis. Notably, the involvement of secreted IGF2 in metas-
tasis has recently been reported by a study that analyzed brain pericytes producing IGF2 and promoting metas-
tasis of breast cancer to brain [65].

Roles for TGF-beta in the establishment of the pre-metastatic niche
The pleiotropic actions of TGF-b as a mediator of immune homeostasis and tolerance, inducer of EMT and
ECM, as well as a promoter of tumor immune evasion, complicate interpretation of the influence of the TGF-b
pathway on cancer progression [66]. While in early stages this pathway has tumor suppressor functions, such
as cell-cycle arrest and apoptosis, in late stages TGF-b can promote tumorigenesis, including metastasis. One
exemplification of the late-stage roles and the ability of TGF-b to enhance metastasis has been linked to the
PMN [67]. As aforementioned, PMN formation is a stepwise process resulting from the combined systemic
effects of tumor-secreted factors and exosomes. For example, according to a recent report, a tumor-exosome

Table 1. Roles for the major growth factors in metastasis Part 3 of 3

GF family Receptors Roles in metastasis

• Inhibition of DPP-4 facilitates breast cancer metastasis by activating the CXCL12/CXCR4/mTOR
axis and promoting EMT [136].

• Cross-talk between fibroblasts derived CXCL12 and endothelial cells promotes tumor cell
intravasation, leading to metastasis [137].

• PDGFRα induces SCC metastasis to the lungs through induction and secretion of SDF-1
(CXCL12), with consequent activation of CXCL12/CXCR4 signaling [138].

NGF TrkA
P75NTR

• NGF involved in the mediation of brain metastases and enhanced survival [139].

HDGF • The HDGF-ALCAM axis promotes metastasis of Ewing sarcoma by means of regulating GTPases
[140].

Listed are the major classes of growth factors engaged in metastasis, their high-affinity receptors (primarily receptors harboring tyrosine kinase functions), and recently
reported functions. The abbreviations used are listed below: CAFs, cancer-associated fibroblasts; EMT, epithelial–mesenchymal transition; GIST, gastrointestinal stromal
tumors; HDGF, hepatoma-derived growth factor; HNSCC, head and neck squamous cell carcinoma; NGF, nerve growth factor; NSCLC, non-small cell lung cancer; PaCa,
pancreatic cancer; PDAC, pancreatic ductal adenocarcinoma; PSC-CM, pancreatic stellate cell-conditioned media; ROR1, receptor tyrosine kinase-like orphan receptor-1;
SCC, squamous cell carcinoma; TAMs, tumor-associated macrophages; TNBC, triple-negative breast cancer.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 1417

Biochemical Society Transactions (2021) 49 1409–1423
https://doi.org/10.1042/BST20210048

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/49/3/1409/916204/bst-2021-0048c.pdf by guest on 20 April 2024

https://creativecommons.org/licenses/by/4.0/


mediated pathway promotes liver metastasis of PDAC cells in a mechanism involving TGF-b and fibronectin
[68]. The authors pre-treated naive mice with exosomes derived from normal pancreatic cells, or from PDAC
cells, and later injected the PDAC cells into the portal vein of the mice to generate liver metastases. Mice pre-
treated with PDAC-derived exosomes exhibited significantly more metastatic lesions in the liver, indicating that
these exosomes can condition the liver towards a microenvironment able to support the growth of PDAC cells.
Additional experiments revealed that uptake of PDAC-derived exosomes by Kupffer cells enhanced secretion of
TGF-b and production of fibronectin by hepatic stellate cells. As a result, the newly formed fibrotic microenvir-
onment enhanced the recruitment of bone marrow-derived macrophages. These findings suggest that tumor-
derived exosomes prime the liver for metastasis.

Perspective
• Because the overwhelming majority of cancer-associated deaths are caused by metastatic

disease, understanding the complexity of this process is vital to optimizing the treatment of
patients with advanced malignancies.

• Metastasis is driven by a combination of genetic drivers (mutations) and a large variety of epi-
genetic processes conferring a diverse collection of phenotype alterations, which offer ample
opportunities for pharmacological interventions.

• Precise understanding of the metastatic process and the multiple roles played by growth
factors and signaling pathways will enable effective ways to prevent, diagnose and treat
metastasis.
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