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Autoaggregation, adherence between identical bacterial cells, is important for coloniza-
tion, kin and kind recognition, and survival of bacteria. It is directly mediated by specific
interactions between proteins or organelles on the surfaces of interacting cells or
indirectly by the presence of secreted macromolecules such as eDNA and exopolysac-
charides. Some autoaggregation effectors are self-associating and present interesting
paradigms for protein interaction. Autoaggregation can be beneficial or deleterious at
specific times and niches. It is, therefore, typically regulated through transcriptional or
post-transcriptional mechanisms or epigenetically by phase variation. Autoaggregation
can contribute to bacterial adherence, biofilm formation or other higher-level functions.
However, autoaggregation is only required for these phenotypes in some bacteria. Thus,
autoaggregation should be detected, studied and measured independently using both
qualitative and quantitative in vitro and ex vivo methods. If better understood, autoaggre-
gation holds the potential for the discovery of new therapeutic targets that could be cost-
effectively exploited.

Introduction
Bacteria often exist in consortia, adhering either to surfaces, non-bacterial cells, or other bacteria.
Bacterium-bacterium adhesion of genetically identical strains is referred to as autoaggregation, while
inter-strain adherence of genetically distinct strains, of the same or different species, is co-aggregation.
While we acknowledge that the mechanisms and contributing factors for both auto- and co-aggregation
overlap, this review will focus largely on autoaggregation, which may be less common in nature but is
better understood microbiologically. Excellent recent reviews on auto- and co-aggregation have been
recently published elsewhere [1–6]. Aggregation occurs due to chemical or electrostatic interaction
between cell surface molecules, which can self-associate or bind a distinct and different receptor.

Autoaggregation effectors
Fimbriae
Fimbriae or pili are structural organelles that confer a range of functions on bacteria, many of them
adhesive. The enteropathogenic Escherichia coli bundle-forming pili are autoaggregation effectors that
mediate localized adherence on epithelial cells, resulting in microcolonies, which are tightened by
pilus retraction and stabilized by other adhesins such as the Escherichia common pilus (Figure 1) [7, 8].
Other type IV fimbriae mediating autoaggregation include the many types of enteroaggregative E. coli
aggregative adherence fimbriae [9–12] and Neisseria meningitidis type IV pili [13, 14]. These retractable
pili typically mediate host cell adherence by the binding of pilus tip proteins to specific receptors and
autoaggregation by lateral, bundling interactions among the main structural subunits of different pili
[13]. These dual function adhesins are important in the initiation, growth, maintenance and disassem-
bly of auto-aggregates (microcolonies) within infection niches. Further examples of surface organelles
involved in autoaggregation are the Vibrio cholerae DNA-uptake pili [15], curli [16], Edwardsiella
piscida EseB filaments [17] and the Vibro vulnificicus Tad pili [18].
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Afimbrial adhesins
Prominent among Enterobacteriales adhesins are the type V secreted proteins, otherwise referred to as auto-
transporters. These include, but are not limited to, the Veillonella monomeric autotransporters A-C [19]; the
Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) such as the tandem autotransporter B and C
(TagB and TagC), the serine-protease hemagglutinin autotransporter sha [20]; the E. coli Antigen 43 (Ag43 or
Flu) [21] and trimeric autotransporter adhesins such as EibC, EibD, Yersinia adhesin A (YadA) of enteropatho-
genic Yersiniae enterocolitica (YeYadA) and Y. pseudotuberculosis (YpYadA) [22] and the Veillonella trimeric
autotransporters A-I [19]. Integral β-barrel proteins can also confer autoaggregation [23].
Adhesins may bind to heterologous receptors but autoaggregation is often achieved through self-association.

The N. meningitidis PilE pilus structural subunit mediates autoaggregation by electrostatic means, requiring a
C-terminal lysine residue [13]. In contrast, the heat-resistant agglutinin 1 (Hra1) and its allelic variant Hek [24]
depend on specific interaction motifs, but their structural basis for self-association is presently unknown [25].
Crystal structures for a few self-associating autotransporters (SAATs) are available and provide the best insight
into self-association mechanisms.
Antigen 43 self-associates via a velcro-like mechanism (Figure 2) [21, 26]. The interacting interfaces are on

this SAAT’s L-shaped passenger domain comprising a stem (SL), an elbow (EJ) and the bottom (BL)
subdomains. Each of these three subdomains has two subtypes: SL2 and SL2; EJ1 and EJ2; and BL1 and BL2
and evolutionary shuffling of these passenger subdomains subtypes gives rise to four distinct Ag43 passenger
subclasses. All passenger subtypes preferentially autoaggregate and heterotypic associations occur majorly
between subclasses having the same SL subtype [26]. The self-associating passenger domain of the
Haemophilus influenzae Hap protein, another SAAT, folds into a three-face prism with hydrophilic residues
on the outside and a hydrophobic core. One face of each prism, the F2 face interacts with the F1–F2 edge of
another, forming a multimeric lattice (Figure 3) [27]. Other SAATs do not share features of either Ag43 or
Hap; it is highly likely that other self-associating mechanisms exist and that these functions evolved
convergently.

Secreted macromolecules
Autoaggregation can be the indirect consequence of a secreted factor mediating aggregation indirectly by
connecting other surface factors [28]. Proteinase K treatment more commonly alters or completely obliterates
autoaggregation compared with sodium periodate (polysaccharide removal) and DNase1 (extracellular DNA
removal) treatment [29–31]. However, polysaccharides as well extracellular DNA, released during autolysis can

Figure 1. Localized adherence of typical enteropathogenic Escherichia coli (EPEC E2348/69) on HT-29 cells is the formation of adherent

autoaggregants mediated by bundle-forming pili and stabilized by other adhesins [8].

(A) The formation of adherent autoaggregants mediated by bundle-forming pili At 3 h postinfection of HT-29 cells with EPEC E2348/69) (B) this

property allows for dense and efficient colonization of epithileal cells within 6 h. Saldana et al. 2009 [8].
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mediate autoaggregation. Myrtenol, a bioactive plant derivative that inhibits autolysis, produces a significant
decrease in the autoaggregation ability of methicillin-resistant Staphylococcus aureus [32].

Modulation of autoaggregation
Calcium induces autoaggregation in Aeromonas hydrophila culture [30] when it is the dominant exchangeable
ion in the medium [16]. This effect can be produced by gallic acid in Actinomyces naeslundii culture [33], and
sodium chloride in Pediococcus pentosaceus R1 and Lactobacillus fermentum R6 cultures [28, 34]. These exam-
ples illustrate that autoaggregation is a regulated and environmentally responsive phenotype.

Figure 2. Velcro-like self-association between identical L-shaped passenger domains of adjacent Escherichia coli Ag43

molecules [26].

The interaction is held by nine hydrogen bonds [N29–T256 (two hydrogen bonds), N60–T256, N60–T237, D79–T237, N96–

R200, T97–R200, T98–R200, G115–R200] and a salt bridge between the R59 and E216 side chains. Reproduced from Heras

et al. 2014 [26] with permission.

Figure 3. Self association between components of a Haemophilus influenzae multimer.

(A) Interactions among four Hap molecules shown in surface (coloured in yellow and by electrostatic surface potential) and cartoon (black and

magenta) representations, respectively. (B) Slab view of the packing interface of the Hap–Hap multimer at a cross-section in the primary interaction

site of D776–N777. The F1/F2/F3 faces are labelled. The F2 face and F1–F2 edge at the growing ends of the multimer are highlighted in red.

Reproduced from Meng et al. 2011 [27] with permission.
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Regulation can be transcriptional, post-transcriptional or even arise from interactions among different
surface factors [35]. Adhesins, particularly short ones like integral outer membrane proteins and autotranspor-
ters can be masked or shielded by exopolysaccharides (EPS), fimbriae and even secreted proteins [23, 35–38, 39
19]. In Lacticaseibacillus rhamnosus, EPS production masked adherence by spaCBA pili [38] and encapsulated
Pasteurella multocida cells autoaggregated less than non-encapsulated (capsule-deficient) P. multocida [40].
Capsule interference could be due to its electrostatic negative charge [40] or sterical obstruction of autoaggrega-
tion factors [41]. Autoaggregation is therefore the product of complex surface-factor choreography, which
ensures that autoaggregation factors are masked and unmasked when necessary; and it is carefully regulated
transcriptionally and post-transcriptionally.

Transcriptional regulation
The cellular levels of the ubiquitous bacterial second-messenger cyclic dimeric guanosine monophosphate
(c-di-GMP), involved in planktonic/sessile transitions and EPS production, is regulated by phosphodiesterase
(pde) degradation. In Erwinia amylovora, deletion of pdeABC resulted in the formation of well-defined aggre-
gates with increased amylovoran, an exopolysaccharide, and cellulose production [42]. In Gram-negative bac-
teria, envelope stress from environmental changes is detected and responded to by the two-component signal/
regulatory transduction system CpxA/CpxR. Environmental cues cause CpxA to autophosphorylate and then
phosphorylate the cytoplasmic response regulator, CpxR. CpxR increases adherence and autoaggregation but
attenuates virulence. Deletion of CpxR results in reduced autoaggregation and biofilm formation in Proteus
mirabilis and Salmonella enteritidis but increased expression of essential Salmonella virulence genes [43, 44].

Epigenetic regulation
Many autoaggregation factors are regulated epigenetically through phase variation and Antigen 43 is the text-
book example. E. coli that have Ag43 in Phase-ON produce rough colonies and very obvious clumping in
liquid cultures [45]. Deoxyadenosine methylase (Dam) methylates GATC sites upstream of the Antigen 43
gene (agn43, flu); when unmethylated, these sites are occlusively bound by the global oxidative stress response
protein, OxyR, which represses transcription. E. coli dam (deoxyadenosine methylase) mutants are locked in
Phase-OFF while oxyR mutants are locked in Phase-ON. These and other findings support a model in which
methylation of DNA upstream of the agn43 promotor prevents repressor OxyR binding. At replication, if OxyR
binds to the promoter before Dam methylates the GATC sites, the progeny of Ag43-expressing cells become
locked in Phase-OFF mode, and therefore produce smooth, non-aggregating strains in which Ag43 cannot be
detected [46].
Phase variation permits strains with strongly self-associating proteins to switch them off in a sub-population at

times or in niches where autoaggregation may be deleterious. The resultant population heterogeneity is evolution-
arily advantageous for the lineage. As has been demonstrated with Antigen 43, autoaggregation is often an asset
for initializing colonization but can get in the way of maintaining colonization or invasion [47]. Thus phasing of
autoaggregation is evolutionarily advantageous to persistent colonizers. The Hag/MID —Haemagglutinin/
Moraxella IgD binding protein— is an autotransporer protein detectable in Moraxella catarrhalis isolates from
newly infected patients but not expressed by M. catarrhalis isolates from chronic obstructive pulmonary disease,
which have reduced autoaggregation. Switching in this case is by slipped-strand mispairing [48].

Post-translational regulation
Epigenetic control results in permanent ON or OFF status in individual cells until cell division permits a phase
change. Phase-ON bacterial cells bound in autoaggregates cannot therefore exit, unless dislodged by shear force
or by proteolysis. The H. influenzae Hap has a proteolytic domain separate from its self-associating domain
that effectively cleaves the molecule off the cell surface [49] offering a ‘built in’ escape mechanism. Escape
mechanisms are under-investigated and likely common-place as they overcome autoaggregation when it poses a
selective disadvantage. After autoaggregation and adherence have been established by N. meningitidis, the bac-
terium adds a phosphoglycerol moiety to its type IV pili. With this modification the pili continue to adhere but
no longer self-associates, thereby releasing bacteria not in contact with host cells to seed other infection foci
[50]. Autoaggregation effectors can also be countered by antiaggregation proteins. Deletiing the gene encoding
the enteroaggregative E. coli anti-aggregation protein (Aap), also known as dispersin, produces exaggerated
clumps of these highly aggregative bacteria [51]. Aap was initially believed to electrostatically optimize the
placement of fimbriae around bacterial cells, and may indeed function this way in part [52]. However, secreted
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Aap on the cell surface [53], effectively masks the integral outer-membrane autoagglutinin Hra1. Aap and hra1
double mutants are non-autoaggregating [35].

Laying bare confounding: autoaggregation-associated
phenotypes
Biofilm formation is a common sequel of aggregation [54] but the phenotypes are seperable. In instances where
aggregates —and even biofilms— detach or float, a relationship between autoaggregation and biofilm mass may
not be seen in conventional laboratory assays that measure biofilms on horizontal solid supports but may be
more visible on vertically mounted surfaces [35]. Biofilms on horizontal surfaces benefit from gravitational pull
on planktonic cells and biofilm aggregates while autoaggregation is less critical to shear stress-mediated biofilm
formation in continuous flow systems [55]. In static culture, autoaggregation and biofilm of V. parvula SKV38
formation correlate but in dynamic flow, a non-aggregating Veillonella trimeric autotransporter gene mutant
formed six times more biofilm than the wildtype. Biofilm formation of Erwinia amylovora is similarly increased
by continuous flow compared with static culture likely because shear stress mediates E. amylovora biofilm in
the plant xylem [42].
Motility is an important contributor to biofilm formation that is not required for autoaggregation.

Salmonella Enteritidis cpxR mutants show increased swimming motility but reduced autoaggregation, biofilm
mass and expression of adhesion-related genes [44]. In Pseudomonas aeruginosa PAO1, flagellar motility
appears to be necessary for surface attachment (biofilm) but not autoaggregation [56]. Cell surface hydrophobi-
city can correlate with adherence or autoaggregation but the correlative phenotype arises from the physico-
chemical properties of individual adhesins. In some studies, a reduction in hydrophobicity increased
autoaggregation [34, 57–59] but reduced cell charge [58], adherence [33] and biofilm mass [60].
Altogether, although many phenotypes are associated with autoaggregation. When assayed, autoaggregation

should be verified microscopically or measured indirectly but specifically through settling assays to avoid con-
founding [61].

Evolutionary benefits of autoaggregation to bacteria
Niche/host colonization
Autoaggregation can be important for niche entry, establishment and maintenance in host colonization and
disease pathogenesis. The immunogenic L. pneumophila collagen-like protein, Lcl, mediates both autoaggrega-
tion for niche colonization and cell to surface attachments in biofilms. It has variable numbers of an immuno-
genic tandem collagen-like gly-Xaa-Yaa (GXY) repeat. Autoaggregation and biofilm formation increase with
GXY repeat numbers; thus, L. pneumophila strains with more than 18 GXY tandem repeats are rarely impli-
cated in clinical cases for two probable reasons: they are hardly aerosolized, and therefore not droplet-
transmissible, due to their hard-to-dislodge and tightly packed environmental biofilm, or they are highly anti-
genic and thus, are cleared by the immune system [62].

Kin recognition
Co-aggregating strains preferentially aggregate with other strains displaying the same or similar surface adhe-
sins. Similarities and differences among adhesins, or alleles of the same adhesin, serve as discrimination cues
for preferential kin/self-interaction (autoaggregation) or mixed interaction (coaggregation) between strains [15].
Autoaggregation mediated kin-recognition has been observed in Vibro cholerae strains via specific preferential
PilA–PilA interaction [15] and Escherichia coli strains via specific immunoglobulin-binding Eib autotranspor-
ters or Ag43 subclass association [21, 22].

Kind-recognition
To modulate the greenbeard effect of kin-recognition, E. coli strains carry different alleles of Ag43 [21]. Diversity
and multiplicity in the carriage of adhesins favour differential and beneficial nepotic kind-interactions, i.e attrac-
tion to organisms carrying similar aggregating factor(s) and exclusion of non-kind. An attractive hypothesis is
that pathogens evolve adhesins that can recognize and latch onto commensal aggregation factors to enter and
establish themselves in a niche. While evidence to fully support this hypothesis remains to be collated, Rck, an
integral outer membrane invasin of Salmonella, contains an autoaggregation motif present in the E. coli (Hra1).
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Hence, the E. coli Hra1 can mediate co-aggregation with Salmonella strains expressing Rck, at least in vitro [25].
Similarly, Antigen 43 self-associates but can also associate with SAATs of diarrhoeagenic E. coli strains such as
AIDA-1 and TibA [63].

Out-competition
During niche colonization, autoaggregation of strains via kin-recognition favours out-competition of discrimi-
nated strains. YadA of enteropathogenic Yersiniae enterocolitica (YeYadA) and YadA of Y. pseudotuberculosis
(YpYadA) both have the YadA-like head domain; however, YpYadA has an additional uptake region. In
co-culture, YeYadA and YpYadA isogenic mutants preferentially autoaggregated (excluding the other), rather
than coaggregated, suggesting that the YpYadA uptake region is a structural discriminating cue for coaggrega-
tion (inclusion) between YeYadA and YpYadA mutants strains. This structural difference between their respect-
ive YadAs and consequent other-exclusion has been hypothesized to be responsible for the rarity of
Y. enterocolitica and Y. pseudotuberculosis co-infection even in prevalent areas [22].

Surviving environmental stress
Autoaggregation and biofilm formation confer antimicrobial resistance, metabolic cooperation, virulence factor
production and survival and persistence in certain niches or hosts [1]. Compared with planktonic Pseudomonas
aeruginosa, non-attached P. aeruginosa aggregates were tolerant to bactericidal gentamicin and carbenicillin.
Conversely, disrupted aggregates showed significantly increased susceptibility to both antibiotics [56].

Selective disadvantages of autoaggregation in disease pathogenesis
Autoaggregation in the absence of cell to surface adhesion is disadvantageous to pathogenic strains in infection
as it can enhance outcompetition and immune clearance [62, 64]. Autoaggregation enhances biofilm formation
but overall coverage of surface/substratum is determined by cellular surface attachment [58, 59]. Thus, hyper-
autoaggregation resulted in the formation of centred-aggregates and biofilms instead of dispersed-aggregates
and spread-out biofilm in wild type Streptococcus pyogenes [64]. To circumvent reduced colonization and sub-
sequent out-competition from the niche, some bacteria use shear force to trigger their attachment to discrete
pockets in the host tissue. Autoaggregation of E. amylovora negatively affects its biofilm formation under static
conditions, thus its biofilm formation in the plant xylem which leads to fireblight disease is hypothesized to be
due to the shear force exerted by the movement of water up the xylem [42].

Applications of autoaggregation studies
Identification of therapeutic targets and alternatives
Colonization-inhibition therapies
Autoaggregation is one of many phenotypes that contribute to colonization and pathogenesis that is amenable
to genetic and biochemical dissection. Better understanding of this phenomenon can inform alternative thera-
peutics to disrupt it [65, 66]. Inhibition of autoaggregation can be achieved by using compounds that compete
for or modify the interaction site or that interfere with the assembly of autoaggregation factors. The assembly
of the aggregative adherence fimbriae II, which is expressed by some enteroaggregative E. coli and confers auto-
aggregation [67], is inhibited by the antiparasitic agent nitazoxanide [68, 69]. Also, the disaggregation of the N.
meningitidis aggregates can be achieved by the inhibition of the N. meningitidis PilF ATPase which leads type
IV pilus disassembly[66].

Predicting probiotic potential
Probiotic organisms often protect against infection by autoaggregating or coaggregating with pathogens.
Autoaggregation allows competitive exclusion and displacement of pathogens while coaggregation increases
proximity of the co-aggregating probiotic bacteria’s Type VI secretion systems and releases antimicrobial sub-
stance to the target pathogen [38]. The well-documented probiotic potential of Lacticaseibacillus rhamnosus
GG lies in its immunogenic SpaCBA pili that mediate mucosal adherence and autoaggregation [70]. L. rhamno-
sus GG convinently outcompetes and inhibits S. aureus growth on keratinocytes; conversely, L. rhamnosus GG
spaCBA, which had significantly reduced keratinocyte adhesion, autoaggregation and co-aggregation with
S. aureus, favoured adherence and growth of S. aureus on kerationcytes [70].
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Identification of diagnostic potential
Organism-specific autoagglutinins eliciting visible autoaggregation can be utilized in disease diagnosis. Serum
extracellular vesicles (EV) may mediate bacterial aggregation potentially specific enough to serve as a quick test
to identify infection pathogens [71]. For example, serum-EVs from neutrophilic granulocytes/neutrophils iso-
lated from osteomyelitis patients mediated aggregation of S. aureus ex vivo, albeit with weak cross-reaction with
P. aeruginosa.

Measuring autoaggregation in vitro
Sedimentation in liquid medium
Bacterial aggregates settle faster and more compactly in liquid culture (Figure 4A,B) and this is the basis for the
most common indirect method used to detect and quantify autoaggregation. Autoaggregation can be observed
macroscopically as the floccules/sediments at the bottom of the static tube. Aggregate architecture can be evalu-
ated by viewing a sample of the sediment by bright field, phase-contrast or fluorescent microscopy, depending
on how the cells were labelled or stained (Figure 4C,D). The change in surface optical density over time can be
used to compute autoaggregation rate. A detailed sample protocol optimized for E. coli, which can be adapted
for other bacteria, is included as Supplementary Information.

Flow cytometry
Flow cytometers use laser beam to sort cells in a milleu by size, complexity or content. The Forward Scatter
Channel (FSC) signal is proportional to cell or aggregate size; the Side Scatter Chanel (SSC) Signal corresponds
to structural complexity and granularity. A multiparametric analysis of both signals, with appropriate gating,

Figure 4. Visualizing autoaggregation as sedimentation.

Autoaggregation in liquid media mediated by (A) the heat-resistant agglutinin 1 gene expressed in Escherichia coli from an

arabinose inducible promoter on the pBAD vector after induction with arabinose (B) vector control prepared with the same

protocol. The tubes show settling patterns in broth cultures left statically for 6 h and the photomicrographs are crystal violet

stained mounts of cells taken from just above the pellet. (C) Autoaggregation chain-forming Streptococcus salivarius in

semi-lquid media. Chain-forming streptococci produce spherical suspended colonies (black arrow) while mutants unable to

form chains produce ‘roots’ in the semi-solid medium (red arrow). Reproduced from Couvigny et al. 2018 [31] under a Creative

Commons Attribution License.
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will therefore sort and quantity single and aggregate cells in a sample. Aggregates will have higher FSC and
SSC while single cells will have lower FSC and SSC [18, 21, 56].

Sedimentation in semi-liquid medium
The viscosity of semi-liquid agar medium restricts the displacement of chain-forming Streptococcus salivarius
and can be used to measure lateral autoaggregation. Trapped chains in extracellular agar-matrix yield round
suspended colonies, while differentially displaced non-chain-forming bacteria escape agar-matrix immobiliza-
tion resulting in colonies with faster sedimenting ‘roots’ (Figure 4C) [31].

Atomic force microscopy
Atomic force microscopes (AFM) can be used to determine the force between the tip of a probe and the
surface of a queried sample. The attractive force causes the cantilever attached to the tip to deflect and this
deflection is detected most commonly by laser beam. The attractive force calculated can be used to determine
the physicochemical and molecular properties of the sample. AFM has been used to probe the surface of cell
aggregates to define their morphology and adhesive strength [21, 39].

Perspectives
• Autoaggregation is a beneficial, complex and highly moderated bacterial phenomenon. It

occurs via specific adhesive interactions and can be regulated transcriptionally, post-
transcriptionally and epigenetically. Autoaggregation differentially correlates to adherence and
biofilm depending on the assay conditions and phenotype-mediating factors.

• Autoaggregation is the result of submolecular interactions many of which remain to be deci-
phered. The complexities arising from autoaggregation require that the phenomenon be
studied directly using multiple methods and evaluated in the context of more complex pheno-
types to which it contributes.

• Identification of autoaggregating bacteria or factors will define new therapeutic targets and
identify probiotic mechanisms, ultimately yielding alternatives to antimicrobials. Understanding
autoaggregation is also key to unravelling bacterial colonization which is in turn fundamental
to pathogen prevention, treatment and containment research.
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