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The protein kinase C-related kinase (PRK) family of serine/threonine kinases, PRK1,
PRK2 and PRK3, are effectors for the Rho family small G proteins. An array of studies
have linked these kinases to multiple signalling pathways and physiological roles, but
while PRK1 is relatively well-characterized, the entire PRK family remains understudied.
Here, we provide a holistic overview of the structure and function of PRKs and describe
the molecular events that govern activation and autoregulation of catalytic activity, includ-
ing phosphorylation, protein interactions and lipid binding. We begin with a structural
description of the regulatory and catalytic domains, which facilitates the understanding of
their regulation in molecular detail. We then examine their diverse physiological roles in
cytoskeletal reorganization, cell adhesion, chromatin remodelling, androgen receptor sig-
nalling, cell cycle regulation, the immune response, glucose metabolism and develop-
ment, highlighting isoform redundancy but also isoform specificity. Finally, we consider
the involvement of PRKs in pathologies, including cancer, heart disease and bacterial
infections. The abundance of PRK-driven pathologies suggests that these enzymes will
be good therapeutic targets and we briefly report some of the progress to date.

Introduction
The PRK serine/threonine kinase family comprises three members, PRK1 (also PKN/PKN1/PKNα),
PRK2 (PKN2/PKNγ) and PRK3 (PKN3/PKNβ). PRK1 was identified from a human hippocampus
library [1] and shown to have a catalytic domain related to protein kinase C. PRK2 and PRK3 were
later identified, with 83% and 71% similarity to PRK1, respectively [2–4]. PRK1 and PRK2 are ubiqui-
tously expressed [5–8], whereas PRK3, initially only detectable in metastatic cancers [4], was subse-
quently found at low levels in all tissues [8].
The PRKs are downstream effectors of Rho family small G proteins. These GTPases behave as

molecular switches for signalling pathways and the Rho family are best known as orchestrators of
actin cytoskeletal rearrangements, with diverse roles in cell migration [9,10], the cell cycle [11] and
control of vesicular trafficking [12].
The PRKs have been detected in the cytosol [13–15], the nucleus [4,14,16,17] and at the plasma

membrane [4,18]. PRK1 also localizes to endosomes in a RhoB-dependent manner [13,19], while
PRK2 has been detected on membranes in lamellipodia [14] and in apical junctions [20], and PRK3
was found in the perinuclear Golgi [4,17].
Despite their importance in regulating key cellular processes, the PRKs are understudied kinases

and our structural and functional understanding of them remains incomplete.

Domain arrangement and structures
All PRKs have broadly the same domain structure (Figure 1).
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HR1 domains
PRKs contain three N-terminal Homology Region 1 (HR1) domains, HR1a, HR1b and HR1c. RhoA is an
interacting partner of the PRK1 HR1a domain [21–23] and all three members of the Rho subfamily, RhoA,
RhoB and RhoC, bind the HR1a domains of PRK1, PRK2 and PRK3 in vitro[24]. RhoA binds weakly to PRK1
HR1b [23,25,26] and this appears to be independent of HR1a binding [25]. In contrast, RhoB may bind
cooperatively to HR1a and HR1b, implying subtle differences in the Rho subfamily interactions [24].
Rac1 interacts with PRK2 [7] and with both PRK1 HR1a and HR1b [25], but there is no evidence for

cooperative binding. The interaction of Rac1 with PRK3 has not been investigated but key interacting residues
are conserved in the PRK1/PRK3 HR1 domains, suggesting an interaction is likely.
The HR1c domain does not appear to bind to RhoA [23] or Rac1 (unpublished observations) and no other

binding partners have been reported. Currently, its function is a puzzle, although it is as well conserved as the
other HR1 domains.
HR1a is an antiparallel coiled coil that binds RhoA [27]. Although there were two potential contact sites

identified in the structure (Figure 2A), the mutational analysis suggested that contact site II is used in the solu-
tion [28]. The structure of Rac1 in complex with HR1b [29] showed that HR1b interacts with Rac1 at a site
equivalent to the contact II site of RhoA (Figure 2B). The Rac1 C-terminal polybasic region folds back and
interacts with both the G domain of Rac1 and with HR1b (Figure 2C). There is no structure of the PRK1
HR1c domain, but our NMR studies indicate that it also forms a coiled coil with an extra short, C-terminal
α-helix [30].
PRK2 and PRK3 have similar HR1 sequences so they likely form similar structures [3,4]. Whether they inter-

act with the same set of Rho family proteins in vivo is not clear, although the functional differences between
the PRKs suggest that at least some interactions are unique.
It is unknown whether two Rho family proteins can bind simultaneously to PRK1. This would be structur-

ally feasible, since there are relatively long linkers between the HR1 domains. Furthermore, structures of con-
structs containing two or more HR1 domains are not available, leaving potential inter-domain interactions
unexplored.

Figure 1. PRK domain arrangement.

PRKs have three N-terminal HR1 domains (HR1a-c), a C2-like domain and a serine/threonine kinase domain. PRK2 and PRK3 have one and two

proline-rich regions, respectively. The activation loop Thr on each PRK is labelled. The PRK1 HR1a pseudosubstrate, the PRK2 dimerization site

and its PRK1/PRK3 equivalents, and the site of autoinhibition that is relieved by arachidonic acid, are indicated. The limits of the various domains

are indicated above each sequence.
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The C2-like domain
PRKs include a C2-like domain with weak homology to the C2 domains of PKC proteins. These comprise 8
antiparallel β-sheets folded into a β-sandwich, which in classical PKCs bind to membrane phospholipids in a
Ca2+-dependent manner [31]. In contrast, C2 domains of novel and atypical PKCs are calcium-insensitive and
bind acidic phospholipids. They are, therefore, critical for the recruitment of proteins to the plasma membrane
[31]. No structural data is available for the C2-like domains of PRKs, however, they are likely to be insensitive
to Ca2+ but bind lipids to activate the PRKs [32–34].

Proline-rich regions
PRK2 has a proline-rich region with a class II motif (PPPAPPR) between the C2 and kinase domains, which
interacts with SH3 domains in the NCK/NCK2 adaptor proteins and more weakly with the SH3 domain of
phospholipase Cγ [6,35]. PRK3 has a similar motif (PPPKPPR) and also a class I motif (RRGPSPP). These are
involved in protein–protein interactions with SH3 domains of the RhoGAP Graf and Graf2 proteins [4,36].

Kinase domain
The PRKs are members of the AGC kinase superfamily and the PRK1 kinase domain structure has been solved
alone and with inhibitors [37] (Figure 3A). A Thr in the activation loop is phosphorylated by PDK1

Figure 2. Structures of HR1 domain complexes.

The Mg2+ on GTPases is shown as a magenta sphere and the nucleotide in a stick representation. The GTPase switch regions are coloured grey.

(A) Crystal structure of RhoA interacting with the HR1a domain of PRK1, which forms an antiparallel coiled coil [27] (PDB:1CXZ). Two different

contacts, I and II, were identified in the crystals. (B) Solution structure of Rac1 interacting with the HR1b domain of PRK1 [29] (PDB:2RMK). The

polybasic region in the C-terminal tail of Rac1 is coloured blue. (C) Close-up of the Rac1 polybasic region in complex with PRK1 HR1b. The

polyproline helix (179-PPP-181) provides the C-terminal tail with an extended conformation, allowing the polybasic region (182-VKKRKRK-188) to

contact the HR1b domain. (D) Crystal structure of PRK1 HR1b interacting with leucine-rich repeats of the Salmonella protein SspH1 [134]

(PDB:4NKG).
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(3-phosphoinositide dependent kinase) [38,39] to activate the kinase. The kinase domain has a C-terminal
extension that encircles the catalytic domain and contains three conserved features found in AGC kinases,
which govern the allosteric regulation of their catalytic domain (Figure 3A, Table 1):

(1) An NFD motif, whose phenylalanine contacts the adenine ring of the substrate ATP.

Figure 3. The PRK kinase domain and its activation.

(A) Crystal structure of the PRK1 kinase domain (apoprotein) [37] (PDB:4OTD). Key residues within the activation loop (cyan), hydrophobic motif

(red), turn motif (purple) and NFD motif (green) are shown as sticks on the structure. The active site, ATP-binding pocket and the allosteric

regulation site, the PIF pocket, are labelled. (B) PRK1 activation events. The events have been placed in a speculative temporal order partly based

on work on PRK2 dimerization studies [51] (1–7). (1) Dimerization keeps PRK1 inactive by allosterically preventing the intramolecular HM/PIF pocket

interaction. (2) Recruitment to the cell membrane via the C2-like domain may allow lipids such as arachidonic acid to disrupt this dimer. (3) HM

phosphomimic can bind to the PDK1 PIF pocket. (4) PDK1 phosphorylates the activation loop. (5) TM phosphorylation by mTOR2/CDK1 releases

PDK1 by promoting the intramolecular HM/PIF pocket interaction. (6) RhoA binds to the HR1a domain and relieves pseudosubstrate autoinhibition.

(7) PRK1 autophosphorylates leading to additional activation. Phosphorylated residues [57] are denoted with a star.

Table 1. Conserved motifs in the kinase domain and C-terminal extension of the
PRKs

Protein Activation loop NFD TM HM

PRK1 T774 903-NFD-905 S916 932-FLDFDF-937

PRK2 T816 945-NFD-947 T958 974-FRDFDY-979

PRK3 T718 847-YFE-849 T860 876-FRDFDF-881
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(2) A turn motif (TM) C-terminal to the NFD [40,41], which is phosphorylated to enhance intramolecular
interactions involving the hydrophobic motif (HM) [37,42].

(3) HM at the extreme C-terminus. Phosphorylated HM interacts with a region of the N-lobe known as the
PDK1-interacting fragment (PIF) pocket, which transmits conformational changes to the active site, allos-
terically activating the kinase [39]. The PRK HM includes a phosphomimic Asp residue, allowing constitu-
tive interaction with the PIF pocket.

Activation and autoregulation
Phosphorylation of the activation loop threonine by PDK1 is aided by interactions between the PRK HM motif
and the PDK1 PIF pocket, which activates PDK1 and brings the two proteins into close proximity. However,
this intermolecular interaction prevents the immediate allosteric activation of the PRK kinase. This requires
phosphorylation of the PRK TM, leading to the release of PDK1, PRK intramolecular HM/PIF pocket inter-
action and kinase activation [17,43–45]. The mammalian target of rapamycin (mTOR) 2, a protein complex
with diverse signalling roles, phosphorylates the PRK1 TM [43], as does cyclin-dependent kinase (CDK) 1 [45],
suggesting multiple pathways feed into PRK activation.
Kitagawa et al. [46] first suggested autoregulation by the N-terminus when they showed that a peptide corre-

sponding to amino acids 39–53 of PRK1 HR1a, with Ile46 mutated to serine, was phosphorylated by PRK1.
They suggested that HR1a contains a pseudosubstrate motif that autoinhibits the kinase, which is released
when RhoA binds to HR1a. The PRK1 consensus is not well-defined, however, and the pseudosubstrate
hypothesis has not been confirmed [47,48]. RhoA may enhance PRK activation in other ways, e.g. when PRK1
binds to RhoA, activation loop phosphorylation by PDK1 increases [49]. The Drosophila orthologue Pkn is
activated by RhoA and Rac1 [50], while RhoC has also been linked to increased PRK3 activity [17], but exactly
how these Rho GTPases achieve this is not understood.
The PRK2 N-terminus inhibits the catalytic domain by preventing its interaction with PDK1 [51]; this may

be relieved by RhoA binding. In addition, PRK2 activity appears to be inhibited in trans by intermolecular
dimer formation, mediated by residues 464–500 (Figure 1). Peptides based on this region inhibit the catalytic
activity of all three PRKs [48,51,52]. It is thought that when the intramolecular HM/PIF pocket interaction is
stabilized, the ensuing conformational changes displace the dimerization motif, leading to PRK monomeriza-
tion and activation. The intramolecular HM/PIF pocket and dimerization interactions are, therefore, allosteri-
cally mutually exclusive, with opposing effects on catalytic activity. Intermolecular interactions involving other
regions in the N-terminus have been suggested [51], implying that PRK dimerization may be mediated by mul-
tiple, cooperative events.
PRK1 and PRK2 can also be activated by proteolysis, e.g. by caspase-3 during apoptosis [53–55]. The consti-

tutively active PRK1 fragment does not seem to play a direct role in apoptotic events but may be involved in
morphological changes observed in microglia [56].
PRK1 is activated by phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 3,4,5-triphosphate

(PIP3) [32] and arachidonic acid [53]. Arachidonic acid is thought to remove the autoinhibition exhibited by a
region of PRK1 and PRK2 that overlaps with or is adjacent to the C2-like domain [57], highlighting the need
for the PRKs to be recruited to a membrane to be successfully activated. Arachidonic acid also activates PRK3,
although its activation of PRK2/PRK3 is less potent than that of PRK1 [4,52,58]. PRKs are activated by other
lipids, including linoleic acid, oleic acid and cardiolipin [5,58–61], and the isoforms show distinct lipid activa-
tion profiles and possibly activation mechanisms [52]. Phospholipids also bind directly to PRK1 HR1a, suggest-
ing that HR1 domains may be involved in membrane binding [62].
Taken together, it is clear that PRK regulation is complex, involving a combination of Rho protein binding

to at least two HR1 domains, competition between inter- and intramolecular interactions, oligomerization,
autophosphorylation and lipid binding. This complexity allows PRKs to be activated in response to many dif-
ferent signalling cues, or in multiple locations, and opens the possibility of PRKs having multiple levels of acti-
vation, rather than being a binary ‘on-off’ switch. Figure 3B postulates a temporal order of activation.

Physiological roles
Many physiological roles of PRKs have been elucidated by identifying direct substrates for their enzyme activity
[47,63] and Table 2 lists some of these. PRK1 is the best-characterized isoform and its roles are summarized in
Figure 4.
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Cytoskeletal regulation and cell adhesion
PRK1 interacts with the actin cross-linking protein α-actinin [64] and its overexpression in fibroblasts resulted
in actin reorganization [65]. Cortactin, which cross-links F-actin, is inhibited by Rac1-activated PRK2, leading
to key cytoskeletal rearrangements in astrocyte migration [66]. The PRKs also regulate the formation of stress
fibres, actin-rich bundles essential for cell migration. Exogenous expression of PDK1 and PRK1 in mammalian
cells led to insulin-induced actin cytoskeletal reorganization and a reduction in the number of stress fibres as
well as membrane ruffling [67]. Expression of active PRK2 caused the formation of fewer, larger stress fibres
but its kinase-dead mutant led to their almost complete loss [7]. Finally, RNAi-mediated knockdown of PRK3
in human umbilical endothelial cells (HUVECs) compromised their migration [68] and their ability to form
stress fibres downstream of TNF-α [69]. More recently, a link between membrane tension, RhoA and ROCK1/
PRK2 provided a mechanism for rear retraction and therefore directional migration [70]. Together, these
studies suggest that PRKs are involved in the modulation of actin stress fibres and the cellular reorganization of
F-actin, although their precise roles may differ.
As well as regulating the actin cytoskeleton, PRK1 phosphorylates the intermediate filament protein vimen-

tin, leading to vimentin filament disruption in vitro[71], while PRK3 knockdown also led to vimentin disrup-
tion [17]. PRK1 also disrupts neurofilament assembly and axonal transport [72]. In neurons affected with
Alzheimer’s disease, PRK1 has been linked to neurofibrillary tangles and their key component, the protein tau.
PRK1 phosphorylates the tau protein leading to disruption of the microtubule assembly [73,74].
In osteoclasts, PRK3 is activated downstream of the Wnt5–RhoA signalling axis and binds the non-receptor

tyrosine kinases c-Src and Pyk2 (Figure 5A). This activates c-Src, which is essential for actin ring formation, a
requirement for osteoclast bone resorption [75,76]. Therefore, PRK3 has a role in bone resorption in vivo and
could be a therapeutic target for bone-loss diseases.
Given their involvement in cytoskeletal regulation, it is logical that the PRKs have also been linked to cell

adhesion. PRK3-depleted HUVECs showed the irregular distribution of VE-cadherin/β-catenin, which link
adherens junctions to the actin cytoskeleton [69], and a reduction in ICAM-1 and in Pyk2 phosphorylation,
both of which are involved in cell adhesion. A study using PRK3 knockout mice implicated PRK3 in the regula-
tion of glycosylation of ICAM-1 and integrins, suggesting that PRK3 may directly affect cell adhesion [8]. In
addition, the PRK3 knockout mice showed decreased micro-vessel sprouting, while MEFs displayed reduced
migration which was not rescued by growth factors. Taken together, these results suggest that PRK3 has a

Table 2. Key PRK substrates. The PRK isoform, substrate and corresponding cellular
process/function are listed

PRK Substrate Cell process/function Reference

PRK1 α-actinin Cytoskeletal regulation [64]

PRK1 vimentin Cytoskeletal regulation [71]

PRK2 Cortactin Cytoskeletal regulation [66]

PRK3 p130cas Cytoskeletal regulation [123]

PRK1, PRK2 HDAC5, HDAC7, HDAC9 Chromatin remodelling [88]

PRK1 H3 Thr11 Androgen receptor signalling [85]

PRK1, PRK2 Cdc25 Cell cycle [15,156]

PRK1, PRK2 Pyrin Immune response [98]

PRK1 RHP3A Vesicular trafficking [157]

PRK1 GSK-3β Glucose metabolism [104]

PRK1, PRK2 PI3KC2-β Nutrient signalling [106]

PRK2 DUSP6 Inhibition of transcription [120]

PRK1 Tau Microtubule disruption [73,74,104]

PRK1 α Crystallin B Molecular chaperone [125]

PRK1 HPV E6 oncoprotein Cell immortalization [158]

PRK2 HCV RNA Pol HCV replication [136,138]
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unique physiological role in angiogenesis that is linked to cell adhesion. In this setting, PRK3 bound preferen-
tially to RhoC, rather than RhoA/B suggesting that RhoC plays a role in angiogenesis. The PRK3 knockout
mice showed reduced metastasis but no change in tumour angiogenesis, so its role in metastasis is not through
increased angiogenesis.
PRK1 and PRK2 also play a part in cell adhesion. ROCK/PRK1 disrupt adhesion of endothelial cells down-

stream of thrombin [77]. PRK1 regulates both tight junctions [78] and adherens junctions; in the latter, PRK1
kinase activity was necessary for cell-surface expression of N-cadherin and integrins in fibroblasts [79]. In con-
trast, PRK2 regulates apical junction formation in bronchial endothelial cells [20], while RhoA-activated PRK2
induces Fyn/Src-dependent phosphorylation of β/γ-catenin and p120ctn, promoting keratinocyte cell–cell adhe-
sion [80]. The role of PRK2 in cell adhesion has been further demonstrated in myoblasts [81], where it interacts
directly with Cdo, a cell-surface protein, Akt and the adaptor protein APPL1, leading to Akt activation and dif-
ferentiation. This is in contrast with PRK1, which is a negative regulator of Akt [82–84].

Androgen receptor signalling, chromatin remodelling and transcriptional
regulation
Metzger et al.[16] implicated PRK1 and PRK2 in androgen receptor (AR) signalling (Figure 5B), showing that
PRK1 binds to the transactivation domain of the AR in vitro and that the PRK1/AR complex binds androgen
response elements of AR-regulated genes. A subsequent study [85] showed that PRK1 phosphorylates Thr11 of
histone H3. H3T11 phosphorylation recruits JMJD2C, which demethylates H3 Lys9, activating AR-dependent
gene expression. All three PRKs are activated downstream of the thromboxane receptors TPα and TPβ [86].
PRK1/PRK2 activation in thromboxane signalling is crucial for chromatin remodelling through

Figure 4. Physiological roles of PRK1.

The key activatory pathways are highlighted. The various processes in which PRK1 is implicated are highlighted in different colours.
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Figure 5. Detailed insight into selected PRK pathways. Part 1 of 2

(A) The role of PRK3 in bone resorption by osteoclasts. PRK3 is activated downstream of the Wnt5/RhoA signalling axis and it forms a complex via
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phosphorylation of H3T11 (Figure 5B) and enhanced recruitment of the AR [87]. The histone deacetylases
HDAC5/7/9 are phosphorylated by PRK1/PRK2 within their nuclear localization signal [88]. This is thought to
reduce nuclear import by allowing the binding of 14-3-3 scaffolding proteins to HDACs, thereby preventing
the HDACs accessing the nucleus to repress transcription. Overall, the PRKs directly affect chromatin structure
leading to transcriptional up-regulation.
PRK1 has been implicated in regulating transcription factors and is localized to the nucleus under stress con-

ditions [89], where it interacts with a neurone-specific helix-loop-helix transcription factor, NDRF2, to amplify
transcription [90]. PRK1 also stimulates expression of atrial natriuretic factor (ANF) in cardiomyocytes [91],
binds to cyclin T2a to enhance myoD-dependent transcription [92] and up-regulates transcription of focal
adhesion proteins such as paxillin [93].

Cell cycle regulation
PRK1 and PRK2 move to the cleavage furrow of HeLa cells during telophase and the midbody during cytokin-
esis [15]. Furthermore, siRNA-depletion of PRK2 led to failed abscission, suggesting a direct role in cytokinesis.
PRK2 depletion delays the G2/M transition, suggesting a role in mitotic entry (Figure 5C) and the pro-mitotic
Cdc25 phosphatase is activated by PRK2 phosphorylation [15]. PRK1 and PRK2 are, therefore, involved in
both mitotic entry and exit in human cells.
The G1 phase cyclinD1–CDK6 complex phosphorylates PRK1 and modulates vascular smooth muscle cell

division and migration [94,95]. RhoA was shown to transcriptionally regulate cyclinD1 expression via PRK1 in
human embryonic stem cells leading to cell proliferation [96]. This suggests that a feedback loop exists between
PRK1 and cyclinD1.

The immune response
Pyrin is involved in the formation of a protein complex known as the pyrin inflammasome, part of the innate
immune system that forms in response to bacterial infection and induces interleukin (IL) release from macro-
phages to combat infection. Some toxins, such as Clostridium botulinum C3 and Clostridium difficile TcdB
inactivate RhoA, activating the inflammasome and therefore the innate immune response [97]. Depletion of
PRK1 and PRK2 in macrophages leads to inflammasome-dependent IL-1β release, suggesting that these PRKs
inhibit pyrin inflammasome activation [98]. The PRKs phosphorylate pyrin, leading to recruitment of 14-3-3
proteins and inhibition of inflammasome activation (Figure 5D). Mutation in the pyrin gene in patients with
the autoinflammatory disease Familial Mediterranean Fever result in a pyrin variant with reduced binding to
PRKs and increased inflammasome activation. Another autoinflammatory disease, hyperimmunoglobulinemia
D syndrome (HIDS), is caused by mutations in the gene for mevalonate kinase, which is necessary for the
correct lipid modification and therefore localization of RhoA, underlining the importance of the RhoA-PRK
signalling axis in inflammasome regulation.
PRK1 has been implicated in lymphocyte trafficking by studies with a PRK1 kinase-inactive knock-in mouse

[99], whose lymphocytes displayed reduced migration from secondary lymphoid organs to the blood and
lymph. The same mouse model indicated that PRK1 also regulates trafficking of all leukocytes [100].

Figure 5. Detailed insight into selected PRK pathways. Part 2 of 2

its proline-rich region with the non-receptor tyrosine kinases c-Src and Pyk2. This leads to c-Src activation, which is essential

for actin ring formation, a requirement for bone resorption in osteoclasts. (B) The role of PRK1 in AR signalling and chromatin

remodelling. The steroid hormone testosterone (T) is converted into dihydrotestosterone (DHT) which binds to the androgen

receptor (AR). The AR interacts with PRK1 and the complex translocates to the nucleus where it binds to androgen-responsive

elements (AREs). PRK1 phosphorylates Thr11 of Histone3, recruiting the demethylase JMJD2C and leading to increased

transcription of target genes. The thromboxane receptors TPα and TPβ, activated by thromboxane A2 (TXA2), induce Histone3

Thr11 phosphorylation by PRK1 and enhance recruitment of the AR, which also leads to Histone3 Thr11 phosphorylation. (C)

PRK2 phosphorylates and activates the Cdc25 phosphatase, which in turn activates CDK1/cyclin B to enter mitosis. CDK1/

cyclin B then phosphorylates PRK2 which is also important during cytokinesis. D) PRK1-dependent down-regulation of the

pyrin inflammasome. Pyrin is part of the pyrin inflammasome which promotes IL-1β release, leading to inflammation during the

innate immune response. PRK1 phosphorylates pyrin causing it to be sequestered by 14-3-3 proteins.
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Glucose metabolism and nutrient signalling
Actin cytoskeletal reorganization and membrane ruffling was observed in adipocytes and fibroblasts expressing
the insulin receptor upon insulin treatment or when PRK1 or PDK1 were expressed [67].
Non-phosphorylatable PRK1 or kinase-dead PDK1 had no effect, suggesting that activation of PRK1 via PDK1
is vital for signal transduction from the insulin receptor to the actin cytoskeleton.
The effect of PRK1 on insulin-stimulated glucose transport was dependent on both active RhoA and

phosphoinositide-3-kinase (PI3K) [101], and expression of PRK1 and active RhoA increased the levels of
GLUT4 glucose transporters translocated to the membrane (Figure 6A). Both PRK1 and PRK3 interact with
phospholipase D1 [102,103], which could provide the link between PRK1 and GLUT4 vesicle translocation.
PRK1 also phosphorylates and inhibits glycogen synthase kinase, GSK-3β, leading to activation of glycogen
synthase [104].
In skeletal muscle cells, PRK2 responds to insulin stimulation by promoting glucose uptake, glycogen synthe-

sis and glucose oxidation [105]. Here, PRK2 knockdown led to reduced mTOR phosphorylation and protein
synthesis and increased AMP-activated protein kinase (AMPK) signalling, suggesting that PRK2 inhibits
AMPK and promotes energy storage and cell growth.
PRK1 and PRK2 both phosphorylate PI3KC2-β, a class II PI3K which catalyzes PIP2 formation, leading to

mTOR1 inactivation [106]. Phosphorylated PI3KC2-β is sequestered by 14-3-3, allowing mTOR1 activation
when nutrients and growth factors are abundant. Therefore, mTOR2, which phosphorylates the TM of PRK1
and PRK2 activating them, promotes mTOR1-dependent nutrient signalling in response to growth factors and
nutrients (Figure 6B). Since PRK2 also activates Akt [81], an activator of mTOR1, it appears PRK2 has a syner-
gistic effect on cell growth. All the above may be under the control of class I PI3Ks, which can activate PRK1
and PRK2 via mTOR2-dependent TM phosphorylation and PI3K/PDK1-dependent activation loop phosphor-
ylation [43].

Development
PRK2, but not PRK1/PRK3, is essential during mouse embryogenesis. PRK2 knockout embryos showed severe
cardiovascular abnormalities, a collapsed mesenchyme, insufficient axial turning, a neural crest migration defect
[107] and neural tube closure defects [108], effects which were unobserved with PRK1 and PRK3 knockouts.
Recently, PRK1 has been identified as a key player in mouse cerebellar development [83], indicated by PRK1

knockout mice having problems with axonal outgrowth and with synapse formation in Purkinje cells.
Additionally, the Drosophila melanogaster orthologue dPkn affects the spatiotemporal regulation of myosin,
leading to its relocalization, an event thought to promote the asymmetric division of neural stem cells [109]. A
mutation in the dPkn gene has also been linked to wing morphogenesis in the context of the Jun-terminal
kinase pathway [110], while dPkn activity has also been associated with negative regulation of actin-myosin
contraction in other developmental processes [111] and with dorsal closure [50].

Role in disease
Cancer
PRK1 is overexpressed in human prostate cancer [16] and promotes transcription of AR-regulated genes by
phosphorylating histone H3T11, an epigenetic marker of prostate cancer [85]. The importance of PRK1 in
prostate cancer is further emphasized as its inhibition abrogates the proliferation of AR-induced tumour cells.
In addition, PRK1 and PRK2, activated by thromboxane receptors, mimic and enhance androgen-dependent
chromatin remodelling and promote the migration and proliferation of prostate cancer cells [87]. PRK1 is a key
driver of metastasis of androgen-independent prostate cancer cells in vivo, based on both knockdown of PRK1
or use of a PRK1 inhibitor [93]. Additionally, PRK3, downstream of PI3K, is necessary for the migration of
PC-3 cells, while PRK3 inhibition abrogated lymph node metastasis in an orthotopic mouse prostate tumour
model [112]. Contrastingly PRK1 and PRK2, but not PRK3, were important for migration in PC-3 cells when
the PRKs are activated downstream of the TPα and TPβ receptors [86,87].
PRK1 mRNA is abundant in several other malignant tissues, particularly ovarian cancer, suggesting that

PRK1 is implicated in several cancers [113]. A PRK1 mutation (E216K) in the HR1c domain has been
described in rhabdomyosarcoma and linked to inhibition of myogenic differentiation [114], while a nuclear
factor 1 X-type (NFIX)-PRK1 fusion has been described in a patient with secretory skin carcinoma [115].
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Figure 6. The role of PRK1 in glucose metabolism and nutrient signalling. Part 1 of 2

(A) The role of PRK1 in glucose metabolism. (1) Insulin binds to its receptor initiating a signal cascade (2) involving the insulin receptor substrate 1
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Other PRK1 fusions have been described in melanocytoma and lung squamous cell and hepatocellular carcin-
omas [116,117], which lack the N-terminal domains and are, therefore, presumed to be constitutively activated.
PRK2, and to a lesser extent PRK1, is vital for cell migration and invasion of a bladder tumour cell line

[118]. Consistent with this, silencing of PRK2 led to decreased cell proliferation, migration and colony forma-
tion in smoke-exposed keratinocytes, while in unsilenced cells PRK2 was overexpressed and hyperphosphory-
lated at the activation loop threonine [119]. In contrast, in colon cancer cells PRK2 activated the DUSP6
phosphatase, reducing phosphorylation of Erk1/2 and activation of the CREB/Elk1 transcription factors [120].
This inhibited the transcription of IL4/10, potentially explaining the reduced levels of tumour-associated
macrophages in human colon cancer. This is, however, the only anti-tumourigenic role of PRK2 described so
far.
PRK2 is highly expressed in triple-negative breast cancer (TNBC) and its depletion in mouse TNBC cells

impaired cell proliferation. PRK2 and PRK1 localize to the transition zone of cilia, in agreement with their
ability to interact with several cilia proteins and contribute to cilia size and signalling, while PRK2 depletion in
polarized epithelial cells impaired planer polarity and anchorage-independent growth [121]. In contrast,
CDK10/Cyclin M-dependent phosphorylation of two threonines in the loop between the PRK2 HR1a and
HR1b domains may stabilize the interaction of PRK2 with RhoA, leading to actin polymerization and repres-
sion of ciliogenesis during cell cycle exit [122].
The role of PRK3 in cancer, particularly metastasis, is being increasingly characterized. Its importance in

primary tumour growth and lymph node metastasis was confirmed in an orthotopic mouse prostate cancer
model [17], where RhoC was identified its preferred binding partner. PRK3 and RhoC are overexpressed in
breast cancer cell lines and PRK3 is critical for their migration in a RhoC-dependent manner. Additionally,
PRK3 is vital for melanoma metastasis in mice and has been implicated in the glycosylation of ICAM-1, which
is involved in signalling between tumour cells during metastasis [8]. PRK3 also co-localizes with the actin cyto-
skeleton remodelling adaptor protein p130cas in pro-invasive cell structures and both are overexpressed in
breast and prostate cancer. PRK3 phosphorylates p130cas and this is required for PRK3-dependent malignant
growth and invasiveness of MEFs expressing constitutively active c-Src [123]. PRK3, therefore, drives metastasis,
a hallmark of cancer.

Heart disease
PRK1 activation has been linked to cardiac myocyte survival, increased production and phosphorylation of α
crystallin B (a molecular chaperone) and increased cardiac proteasome activity, all of which would protect the
heart during ischaemia [124,125]. Hypotonic swelling of cardiac myocytes activates PRK1 and may involve sig-
nalling between Src, RhoA, PRK1 and ERK leading to survival [126]. During ischaemia/reperfusion (I/R),
PRK1 localizes to the sarcoplasmic reticulum and associates with Ca2+-calmodulin-dependent kinase 2 delta
(CamKIIδ) [127], preventing its phosphorylation of phospholamban, which may explain PRK1-dependent car-
dioprotection in vivo. PRK1 knockouts exhibit slight systolic and diastolic dysfunction and show greater I/R
injury [127], consistent with a role in cardioprotection. The involvement of PRK1 in cardioprotection is also
suggested by its involvement in the transcriptional up-regulation of ANF, which is secreted by the heart to
offset high pressure [91,128]. In humans with chromosome 19p13.12 microdeletion syndrome, PRK1 is lost,
leading to several congenital cardiac defects and further implicating a role for PRK1 in normal heart physiology
[129].
PRK1 is part of a signalling complex assembled by AKAP-Lbc, which includes PRK1, p38α MAPK, MLTK

and MKK3: RhoA/PRK1 signalling is needed to activate p38α in cardiomyocytes leading to compensatory
cardiac hypertrophy and preservation of cardiac function following pressure overload [130–132]. PRK1 and

Figure 6. The role of PRK1 in glucose metabolism and nutrient signalling. Part 2 of 2

(IRS1)-dependent activation of phosphoinositide 3-kinase (PI3K). This activates PDK1 which in turn activates PRK1. PRK1

interacts with phospholipase D1 (PLD1) to enhance the translocation (3) of GLUT4 receptors to the membrane permitting

glucose entry (4). PRK1 also inhibits GSK-3β, an inhibitor of glycogen synthase (GS), to promote glycogen synthesis (5). B) The

role of PRK1 in nutrient signalling. PRK1 and PRK2, which are activated by mTOR2, phosphorylate PI3KC2-β, a class II PI3K.

This enzyme catalyzes PIP2 formation causing the sequestration of PI3KC2-β by 14-3-3 proteins and subsequent mTOR1

activation when nutrients are abundant. When nutrients are scarce, PI3KC2-β activity leads to mTOR1 inhibition.
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PRK2 phosphorylate Myocardin-related transcription factor A (MRTFA), which can then up-regulate cardiac
hypertrophic gene expression [133]. However, knockout of PRK1/PRK2 in cardiomyocytes led to greater resist-
ance to cardiac dysfunction, also implicating the PRKs in pathological cardiac hypertrophy and fibrosis regula-
tion [133].

Pathogen infection
Salmonella inject cells with an E3 ubiquitin ligase, SspH1, which selectively removes host proteins. The
leucine-rich repeat region of SspH1 binds to PRK1 HR1b (Figure 2D), relieving its own autoinhibition [134].
This leads to SspH1-mediated proteasomal degradation of PRK1, which, given the role of PRK1 in cellular
immunity, may be beneficial to the infecting pathogen.
The CagA toxin was responsible for the recruitment of PRK2 from the cytosol to the plasma membrane in

Helicobacter pylori-infected gastric adenocarcinoma cells [135]. Surprisingly, while CagA inhibited PRK2 activ-
ity, cells infected with CagA showed increased cell motility and invasion, and it was suggested that this may be
due to disrupted PRK2-dependent cell adhesion, leading to loss of cellular polarity.
Some pathogens, rather than inhibiting PRK2, depend on it for virulence, e.g. the hepatitis C virus (HCV),

where PRK2 phosphorylates its RNA-dependent RNA polymerase allowing viral replication [136–138].
Another example is the interaction of PRK2 with the leucine-rich repeat domains of the YopM proteins of
Yersinia pseudotuberculosis and Yersinia enterocolitica; this interaction is necessary for full virulence [139,140]
and leads to PRK-dependent pyrin inflammasome inactivation [141,142].

Conclusions
Here, we have summarized the current knowledge about the regulation of the PRKs and the multiple signalling
pathways in which they operate.
Several attempts to target the PRK kinase domain have been made with inhibitors that target the active site

[37,52,143–148] but, as expected, the well-documented issues with specificity around small molecule inhibitors
of kinases apply equally to PRK inhibitors [149]. The complex regulation that we have described above suggests
that engineering more specific inhibitors, e.g. to block the PIF pocket, is a potential alternative approach [150].
Extensive understanding of the kinase domain structure, dynamics and allosteric regulation will be necessary
for the rational design of such inhibitors.
Attempts have been made to target PRK2 in HCV infection in mice, with siRNA-PRK2 treatment showing

potent anti-HCV efficacy, although this needs to be tested in more animal models [151,152]. The low expres-
sion of PRK3 in normal tissues and its high expression in cancer suggest that it will have a good therapeutic
window. The siRNA/lipoplex complex known as Atu027, designed to inactivate PRK3, showed efficacy in
mouse prostate and pancreatic cancer models [68] and very low toxicity in patients [153]. This is currently in
Phase II clinical trials for pancreatic cancer [154] and a preliminary Phase Ib/IIa study has demonstrated prom-
ising results [155].
As more is discovered about the roles of PRKs in several pathologies, specific inhibitors that could represent

useful therapeutics will be eagerly sought.

Perspective
• The PRKs are understudied kinases and there is immediate need for further deciphering of

their structure and function.
• More studies are needed to identify novel activation mechanisms, substrates and interacting

partners.
• Inhibitors that are specific for each PRK isoform with few off target effects are required to

dissect the role of the PRKs in signalling pathways and as lead therapeutics in several
pathologies.
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