
886 Biochemical Society Transactions (2012) Volume 40, part 4

Extracellular small RNAs: what, where, why?
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Abstract
miRNAs (microRNAs) are a class of small RNA that regulate gene expression by binding to mRNAs and
modulating the precise amount of proteins that get expressed in a cell at a given time. This form of
gene regulation plays an important role in developmental systems and is critical for the proper function
of numerous biological pathways. Although miRNAs exert their functions inside the cell, these and other
classes of RNA are found in body fluids in a cell-free form that is resistant to degradation by RNases. A
broad range of cell types have also been shown to secrete miRNAs in association with components of the
RISC (RNA-induced silencing complex) and/or encapsulation within vesicles, which can be taken up by other
cells. In the present paper, we provide an overview of the properties of extracellular miRNAs in relation to
their capacity as biomarkers, stability against degradation and mediators of cell–cell communication.

Introduction
Mandel and Métais first described the presence of extra-
cellular nucleic acids in human plasma in 1948 [1]. The
concept of extracellular RNA emerged in a different context
in the 1970s, when Kolodny et al. [2,3] showed that RNA is
transferred between fibroblast cells in vitro and Stroun et al.
[4] demonstrated that highly methylated RNA is secreted by
diverse cell types through a process not associated with cell
death. In parallel, a range of reports in the 1960s suggested that
RNA from one tissue (e.g. liver) could induce tissue-specific
expression in other cell types [5], although the mechanisms
surrounding this phenomenon were never described. The
recent discovery of RNA encapsulation within extracellular
vesicles [6] is consistent with some of these earlier studies and
provides a framework for conceptualizing RNA transport
in mammals. At present, however, there is little connection
between secretion and uptake of RNA observed in vitro and
the meaning of RNA in systemic circulation. In the present
paper, we highlight some of the key issues surrounding
the biological and medical meaning of extracellular miRNA
(microRNA).

miRNA classification
Several classes of small RNA have been identified in animals,
fungi and plants which play diverse roles in gene regulation
and genome defence (reviewed in [7]). The defining features
of a small RNA include its origin and interaction partners. In
the present paper, we focus on miRNAs, which are derived
from stem–loop structures located within the introns or exons
of coding genes or transcribed from ‘intergenic’ regions of the
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genome. In animals, the stem–loop structures are processed
by Drosha in the nucleus, followed by Dicer in the cytoplasm,
resulting in a ∼22 nt duplex RNA (reviewed in [8]). One
strand of this duplex is incorporated into RISC (RNA-
induced silencing complex), which binds to mRNAs at
specific sites with base-pair complementarity to the miRNA;
generally these sites are located in the 3′-UTR (untranslated
region) of the mRNA [9]. The interactions of the miRNA and
mRNA within RISC leads to destabilization of the mRNAs
and/or inhibition of translation [9]. Currently, 1921 mature
human miRNAs have been annotated in miRBase version 18
[10], each of which is predicted to target hundreds of mRNAs
[9]. Given the vast scope for combinatorial regulation of
targets, it is difficult to find a cellular pathway not regulated
at some level by a miRNA. Indeed, the majority of protein-
coding genes contain miRNA-binding sites under selective
pressure [11] and misexpression of miRNAs is associated
with many disease processes, encompassing all cancers, as well
as metabolic, cardiovascular, neuronal and immune-related
diseases [12].

miRNAs as extracellular biomarkers
The first evidence that miRNAs exist outside cells was
reported by Valadi et al. [6] in 2007, who showed that
exosomes secreted by mast cell lines contain both mRNA
and miRNA. In parallel, several reports in 2008 demonstrated
that miRNAs are present in a cell-free form in human
and mouse serum [13–16]. Given the numerous associations
between miRNAs and disease, their presence in blood
has sparked enormous interest in using them as non-
invasive biomarkers [17]. However, the actual composition
of extracellular miRNAs in blood is likely to derive from
a variety of cell types and factors dictating secretion of
RNA are not yet known (discussed further below). Tissue
injury appears to be one pathological state that leads to
differential expression of specific miRNAs in blood. Wang
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et al. [18] demonstrated that the liver-specific miRNA miR-
122 is elevated ∼500-fold in mouse plasma following liver
injury by acetaminophen overdose. Others have reported
increases in miR-122 levels in human serum following
liver damage induced by acetaminophen [19] or hepatitis
B infection [20]. Differential expression of extracellular
miRNAs is also associated with AMI (acute myocardial
infarction). Cheng et al. [21] reported a transient 200-fold
increase in the level of miR-1 in rat serum at 6 h after AMI and
a similar increase in human serum taken within 24 h of AMI.
Whether miR-122 and miR-1 are released during cell death
and/or there is specificity in the secretion of these miRNAs
is unknown. Both of these miRNAs are highly abundant and
tissue-specific [22], which might be essential criteria for any
good miRNA biomarker, since many cell types can secrete
miRNAs into circulation [23].

Beyond tissue injury, miRNA changes in serum or
plasma are also associated with different cancers (reviewed
in [24]). Mitchell et al. [14] used a mouse xenograph
model with human prostate cancer cells expressing human-
specific miRNAs (miR-629* and miR-660) to demonstrate
that tumour-derived miRNAs enter the circulation and are
detectable in plasma [14]. They also observed a 46-fold
elevation in miR-141 in the serum of patients with prostate
cancer and reported 60% sensitivity and 100% specificity
in detecting individuals with cancer. Ironically, miR-141 in
human plasma was first reported in association with
pregnancy; this miRNA is enriched in the placenta, increases
in maternal plasma with gestational age and falls off
significantly 24 h after delivery [16]. Clearly, prostate cancer
and pregnancy would not be examined in the same individual,
but these examples highlight the complexity of using
circulating miRNAs as biomarkers. Further understanding
of when, where and how miRNAs are released or secreted by
different cell types will guide investigations into their capacity
as biomarkers.

Who else is out there?
Analyses of small RNA content in bodily fluids has been
largely directed toward miRNAs, given their tissue-specific
expression, the precedence for their differential expression
in disease, and existing commercial interest [25]. However,
other classes of small RNA have also been detected in the
extracellular environment: the 3′-end fragments of rRNAs
and tRNAs are detectable in human milk [26] and U6
snRNA (small nuclear RNA) is up-regulated in the sera
of cancer patients [27]. It is therefore possible that various
small RNAs exist in an extracellular form that may be of
diagnostic or biological interest. Interestingly, studies in the
1970s suggested that much of the RNAs secreted by cells
were small (sedimenting between 2.5 and 4 S) and highly
methylated [4]. It is possible that miRNAs are not the only,
or even the most interesting, player in the extracellular space.
Existing sequence datasets from human serum and plasma
suggest that miRNAs dominate the small RNA fraction (40–
96% of reads), but in some cases, a significant proportion of

reads map to rRNA (3–56%) or tRNA (11–51%), with <1%
mapping to snoRNA (small nucleolar RNA) and snRNA
[14,15,28,29]. However, in most publications, only those
reads annotated as miRNAs are reported, and it should be
noted that rigorous controls/standards for contamination
of cellular RNA have not yet been defined. On the other
hand, the extracellular environment is known to be full of
RNases, and a key question in interpreting the meaning
of any extracellular RNA is how and why it is stabilized.

The extracellular environment
miRNAs have been found in various body fluids, including
serum, plasma, saliva, tears, urine, amniotic fluid, colostrum,
breast milk, bronchial lavage, cerebrospinal fluid, peritoneal
fluid, pleural fluid and seminal fluid [30]. Yet, highly stable
RNases are an abundant component of these fluids; the
concentrations of RNases in human serum or plasma are
estimated at several hundred nanograms/ml, and can be
elevated in cancer patients [31,32]. Consistent with this, Tsui
et al. [33] showed that synthetic RNA is degraded in less
than 5 s when incubated with human plasma, yet they found
that mRNAs present in serum and plasma are stable for
many hours. Further studies (before analysis of miRNAs)
have confirmed this apparent RNA stability: mRNA in
plasma is not degraded by RNase-A/T, RNase H or DNase
[34], arguing against the possibility that it is stabilized by
association with DNA [4]. A range of reports have shown
similar results with miRNAs, and researchers have gone on
to test the extremes of miRNA stability in serum and plasma
using long periods at room temperature, freeze–thawing,
exposure to boiling and different pHs [14,15,35]. These and
other investigations suggest that a large component of the
RNA found in fluids is extremely stable. On the other hand,
pre-treatment of serum or plasma with detergents (e.g. Triton
X or SDS) makes mRNAs susceptible to degradation by
RNases [33,34], and miRNAs secreted from THP-1 cells
similarly lose protection following treatment with detergents
[36]. As postulated by many researchers since the 1970s, it
appears that at least one mechanism for the extracellular
stability of RNAs is the natural encapsulation of these
molecules in vesicles [37].

Stability and function of extracellular RNA
Vesicles are secreted by many (if not all) cell types and have
been detected in body fluids through density sedimentation,
electron microscopy and analysis of specific markers on their
surfaces. Owing to a lack of precise nomenclature, many
terms are used to describe extracellular vesicles, including
microparticles, microvesicles, exosomes and membrane
particles; in the present paper, we refer to exosomes,
apoptotic bodies and shedding microvesicles as defined in
a recent review [38]. The term exosome defines vesicles
∼40–100 nm in diameter, of endocytic origin, derived from
MVBs (multivesicular bodies) that fuse with the plasma
membrane [39]. Shedding microvesicles are ∼100–1000 nm
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Figure 1 Diverse origins of stabilized extracellular miRNA

Extracellular miRNAs are protected from degradation by RNases through encapsulation within exosomes, shedding

microvesicles and apoptotic cells. They have also been identified in lower-molecular-mass complexes bound to Ago2,

NPM1 or HDL.

in diameter and derive directly from cell membranes by
budding. Apoptotic bodies are ∼50–5000 nm in diameter and
are membranous vesicles shed from the plasma membranes
of dying/apoptotic cells via blebbing. A description of
the biogenesis and distinguishing features of these vesicles
is summarized in [38]. Of interest is the fact that RNA
has been identified in vesicles (cartoon in Figure 1) and
specific small RNAs are enriched in vesicles in relation to
the pool of intracellular small RNA [6,40]. Furthermore,
various reports suggest that vesicular miRNAs are a medium
for cell–cell communication. For example, miR-150 is
selectively packaged into exosomes secreted by THP-1 cells
(a human acute monocytic leukaemia cell line), which are
taken up by HMEC-1 cells (a human microvascular endo-
thelial cell line). Increased concentrations of miR-150 in
HMEC-1 cells leads to down-regulation of miR-150 targets,
including the transcription factor c-Myb, resulting in
enhanced cell migration [36]. Functional transfer of RNA
between cells also occurs through apoptotic bodies: miR-
126 is the most abundant miRNA in endothelium-derived
apoptotic bodies generated during atherosclerosis and can be
transferred and taken up by vascular cells [41]. Using a variety
of controls, including apoptotic bodies from cells derived
from miR-126− / − mice, Zernecke et al. [41] demonstrated
that the uptake of miR-126 is responsible for the down-
regulation of its target, RGS16, an inhibitor of G-protein-
coupled receptors. Regulation of RGS16 by miR-126 leads to
an increase in CXCL12 (CXC chemokine ligand 12), which
causes mobilization of progenitor cells and incorporation
into plaques, conferring protective effects in diet-induced
atherosclerosis [41].

Before it was known that RNA was contained within
secreted vesicles, numerous studies have demonstrated im-
portant functions of exosomes in cell–cell communication, in
particular in neuronal and immune signalling (reviewed in
[42]). On the basis of the work cited in the present paper,
it seems likely that RNAs within these vesicles could be
involved directly in altering the functional properties of
recipient cells. However, the actual mechanisms governing
specificity, in terms of which RNAs are selectively packaged
into vesicles, remain unknown. Given the short length
of a mature miRNA, there are limited cis-acting elements
within the sequence to dictate specificity. However, it is
possible that miRNA-interaction partners could somehow
be involved in localization of miRNAs for export. Gibbings
et al. [43] demonstrated that exosomes secreted from
monocytes contain components of the RISC machinery,
including Ago2 (Argonaute 2) and GW182, which co-migrate
with endosomal–MVB fractions in density gradients [43].
miRNA–RISC silencing activity is also enhanced when MVB
turnover is impaired and MVBs positively regulate RISC
loading [44]. However, to date, there is no experimental
support for a mechanism whereby specific miRNAs are
loaded into MVBs for secretion; neither is it known how
specificity is achieved in apoptotic bodies and shedding
microvesicles.

Non-vesicular extracellular miRNA
The studies cited above support the existence of miRNA-
containing vesicles, but this may not be the most prevalent
form of extracellular miRNA. Several reports suggest that
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a substantial fraction of extracellular miRNAs are not
encapsulated within vesicles, but are protected against
RNase digestion by association with proteins. Wang et al.
[45] showed that miRNAs secreted by A549 and HepG2
cells associate with RNA-binding protein nucleophosmin
(NPM1), a multifunctional histone-binding protein. On the
basis of size-exclusion chromatography, Arroyo et al. [46]
reported that the majority of plasma miRNAs (∼90%) are
present as Ago2–miRNA complexes not contained within
vesicles. They showed further that these miRNAs become
susceptible to RNase digestion following proteinase K
treatment of plasma [46]. Similarly, Turchinovich et al. [47]
showed that the majority of miRNAs found in human plasma,
as well as those secreted from the MCF7 breast cancer cell line,
are associated with Ago2, but exist in a form that is <300 kDa.
The authors suggested that the high proportion of Ago–
miRNA may represent by-products of dead cells, since
Ago–miRNA complexes are known to be extremely stable
within cells [47]. However, Ago2 is also present within
exosomes [36,43], and it may be that some of the Ago2–
RNA complexes identified derive from vesicles, potentially
damaged during purification. Another study has shown
that specific miRNAs are complexed to HDL (high-density
lipoprotein) in serum, and this also protects miRNAs from
degradation and mediates transport into recipient cells [48].
The mechanisms controlling which export/import pathways
are active in a cell are unknown. However, exosome release
is blocked by inhibiting nSMase2 (neutral sphingomyelinase
2), an enzyme involved in ceramide biosynthesis [49].
Interestingly, inhibition of nSMase2 actually increases the
export of miRNAs by HDL [48], suggesting distinct
mechanisms and/or competition in the export pathways.
Further research is required to understand the mechanisms
dictating specificity in the secretion and uptake pathways.
Nonetheless, the capacity to mimic and exploit these natural
RNA-transport vehicles, whether they be vesicles or protein
co-factors, has exciting implications for therapeutic RNA
delivery [50].

The extracellular communicator hypothesis
revisited
In a hypothesis paper in 1988, entitled “Extracellular
‘communicator RNA’”, Steven Benner proposed that RNA
could be involved in cell–cell communication as a short
distance messenger [51]. He based this on the fact that
extracellular fluid is full of proteins with RNase activity,
as well as RNase inhibitors, and the balance between these
molecules is associated with disease conditions including
cancer and angiogenesis. We are now aware of even more
secretory RNase-like proteins with functions in innate and
acquired immunity [52]. One might expect, as Benner
proposed [51], that it is the substrates of extracellular RNases,
i.e. extracellular RNA, that are important. However, all of the
examples cited in the present paper suggest that extracellular
RNA is protected from RNases through association with

proteins and/or encapsulation within vesicles. It is therefore
possible that we have just scratched the surface in understand-
ing the functions of short- or long-lived extracellular RNAs,
and the meaning of the numerous RNase-like proteins that
have evolved in different species [53].
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