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The Wnt signalling pathways are of great importance in embryonic development and onco-
genesis. Canonical and non-canonical Wnt signalling pathways are known, with the canon-
ical (or β-catenin dependent) pathway being perhaps the best studied of these. While
structural knowledge of proteins and interactions involved in canonical Wnt signalling has
accumulated over the past 20 years, the pace of discovery has increased in recent years,
with the structures of several key proteins and assemblies in the pathway being released.
In this review, we provide a brief overview of canonical Wnt signalling, followed by a com-
prehensive overview of currently available X-ray, NMR and cryoEM data elaborating the
structures of proteins and interactions involved in canonical Wnt signalling. While the
volume of structures available is considerable, numerous gaps in knowledge remain, par-
ticularly a comprehensive understanding of the assembly of large multiprotein complexes
mediating key aspects of pathway, as well as understanding the structure and activation of
membrane receptors in the pathway. Nonetheless, the presently available data affords
considerable opportunities for structure-based drug design efforts targeting canonical
Wnt signalling.

Brief overview of canonical Wnt signalling
Wnt signalling involves a series of complex pathways and underpins developmental processes [1].
When dysregulated, it is synonymous with impaired regeneration and a variety of pathological states,
including carcinogenesis [2–5]. Wnt signalling is primarily classed into canonical (β-catenin depend-
ent) and non-canonical (β-catenin independent) pathways. Canonical Wnt signalling is primarily
controlled through the regulation of three distinct multiprotein complexes: the signalosome, the degra-
dosome and the nuclear enhanceosome, as well a variety of extracellular agonists and antagonists
which precede these intracellular events [6] (Figure 1).
Wnt signalling can be initiated or enhanced by a variety of extracellular ligands, including Wnt and

Norrin proteins, which bind to Frizzled (Fzd) receptors, and R-spondins (RSPOs), which bind to LGR
family receptors. Wnt proteins are lipid-modified at a conserved serine by the O-acyltransferase
Porcupine to facilitate secretion and receptor binding. Canonical Wnt signalling can be amplified fol-
lowing concomitant binding of Wnt and R-spondin (RSPO) ligands, which may function dependently
or independently of LGR [7]. RSPOs prevents Fzd degradation by blocking the activity of the RING
finger ubiquitin ligases, RNF43 and ZNRF3 [8,9]. Norrin is an atypical Wnt ligand that can bind spe-
cifically to Fzd4 and LRP5/6 [10], as well as the Fzd4–Tspan12 complex, to activate Wnt signalling
[11]. Extracellular antagonists include Wnt inhibitory factor (WIF), secreted-Frizzled related proteins
(sFRPs), Dickkopfs (DKKs) and Notum, each of which are diverse in structure and function (specific
details of which will be elaborated later in the review). Wnt ligand binding to membrane-bound recep-
tors and co-receptors results in the formation of multiprotein assemblies or ‘signalosomes’, composed
of Fzd receptors and LRP5/6 co-receptors bound to Wnt ligands. These signalosomes are highly
dynamic and can be negatively regulated by RNF43/ZNRF3, which, in turn, is balanced by
R-spondin–LGR5 receptor interactions [12].
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Intracellularly, Wnt signalling is controlled at the level of the β-catenin destruction complex, or the degrado-
some, which primarily consists of the scaffold protein Axin, glycogen synthase kinase 3β (GSK3β), casein
kinase 1α (CK1α), protein phosphatase 2A (PP2A) and Adenomatous Polyposis Coli (APC). [13] In the
absence of Wnt stimulation, β-catenin is sequentially phosphorylated by CK1α (Ser45) and GSK3β (Thr41,
Ser37, Ser33), resulting in ubiquitin-mediated proteasomal degradation through a β-TrCP-dependent mechan-
ism. Following Wnt stimulation, the degradosome is recruited to the membrane through a Dvl-Axin mediated
mechanism, where phosphorylation of the co-receptor LRP5/6 on its cytoplasmic tail by GSK3β and CK1α/ε
occurs [13]. The recruitment of GSK3β/CK1 and Axin can be mediated by adenomatous polyposis coli
membrane recruitment 1 (Amer1) [14]. This, in turn, can result in the inhibition of GSK3β [15–18] and the
translocation of β-catenin to the nucleus. Poly(ADP-ribosyl)ation of Axin by Tankyrase mediates its ubiquitina-
tion and subsequent degradation, destabilising the destruction complex, and thus activating Wnt signalling
[19]. Once localised to the nucleus, β-catenin acts a co-factor for the initiation of the transcription of Wnt
target genes [2]. This Wnt-driven transcriptional program is controlled by the Wnt enhanceosome, the core of
which is made up of the ChiLS (Chip-SSDP/LIM-domain binding protein) complex, which binds Pygopus,
Groucho/TLE and scaffold protein BCL9/legless [20,21]. In a ‘Wnt off’ context Groucho/TLE binds TCF/LEF
and ChiLS to repress transcription, while in a ‘Wnt on’ environment, β-catenin induces an enhanceosome
complex rearrangement to bind to TCF/LEF transcription factors, and other transcriptional co-activators (e.g.
CREB-binding protein and BAF complex) to initiate target gene expression [22].

Structural knowledge of extracellular regulation of Wnt
signalling
Wnts and related proteins
The structures of a relatively limited number of Wnt protein family members have been solved (Figure 2A).
This is due in part to the presence of O-lipidation at a conserved serine that makes Wnt proteins highly hydro-
phobic and challenging to purify. The first structure of a Wnt protein solved was the Xenopus Wnt8 in
complex with the mouse Fzd8 cysteine-rich domain (CRD), revealing a novel protein fold and the importance
of lipidation for direct binding of Fzd [23]. This structure further illustrated that Wnts bind to Fzds at two dis-
tinct sites on opposite faces of the CRD. The Wnt protein family contains 19 members in mammals, however,
the structure of only one mammalian Wnt has been solved experimentally [24]; further study of the Wnt

Figure 1. Graphical overview of canonical Wnt signalling.

Figure prepared using BioRender.
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family in mammals has been facilitated by computational approaches [25–27]. The structure of the N-terminal
region of the Drosophila WntD protein revealed an overall similar fold to the N-terminal regions of other
members of the Wnt family [28], although unlike other members of the family, this protein is not lipidated
[29].

Norrin
Norrin is an atypical Wnt signalling activator displaying a distinct fold to Wnt, achieving its activity through
forming a ternary complex with a Fzd and an LGR (Figure 2B). The first structure of Norrin obtained was that

Figure 2. Structures related to interactions involving secreted positive regulators of Wnt signalling.

(A) Wnt-related proteins and interactions. Structures depicted include: WntD (PDB 4KRR); the human Wnt3 complex with the mouse Fzd8

cysteine-rich domain (PDB 6AHY); the Xenopus Wnt8a complex with the mouse Fzd8 cysteine-rich domain (PDB 4F0A). (B) Norrin and its

interactions. Structures depicted include: unbound norrin-maltose binding protein fusion (PDB 4MY2), unbound norrin (PDB 5BQB), norrin-maltose

binding protein fusion in complex with Fzd4 (PDB 5CL1), norrin-Fzd4-sucrose octasulfate ternary complex (PDB 5BQC). Maltose binding protein

hidden. Key residues contacting sucrose octasulfate in PDB 5BQC are shown as sticks. (C) RSPO1–LGR–ZNRF3 complexes. Structure represented

include: human RSPO1–LGR4 complex (PDB 4KT1), human RSPO1–LGR5 complex (PDB 4BSU), human RSPO1 in complex with mouse ZNRF3

(PDB 4CDK). The structure of native human RSPO1 (PDB 4BSO) is shown for reference. (D) RSPO2–LGR–ZNRF3 complexes. Structures

represented include: human RSPO2–LGR5–ZNRF3 complex (PDB 4UFS), human RSPO2–LGR5 complex (PDB 4UFR), Xenopus RSPO2 in complex

with mouse ZNRF3 (PDB 4C9E). The structure of native human RSPO1 (PDB 4BSO) is shown for reference. (E) R-spondin–LGR–RNF43 complexes.

Structures represented include: human LGR5–RSPO1–RNF43 complex (PDB 4KNG); Xenopus RSPO2–RNF43 complex (PDB 4C9V). The native

human RSPO1 (PDB 4BSO) is shown for reference.
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of its fusion with maltose binding protein [10]; a complex of this fusion protein with the Fzd4 CRD was subse-
quently obtained [30]. The structures of the unfused Norrin, its complex with Fzd4, and the Norrin-Fzd4
ternary complex with the heparin mimic sucrose octasulfate have also been determined [31], revealing the
potential for glycosaminoglycans to bridge the Norrin-Fzd4 interaction. Specifically, norrin residues Lys58,
Arg107, Arg109 and Arg115 and Fzd4 residues His154 and Asn155 interact directly with sucrose octasulfate in
the crystal structure (Figure 2B).

R-spondins (RSPOs)
RSPOs feature two furin repeat domains (Fu1 and Fu2), as illuminated in the structures of the human RSPO1
and the Xenopus RSPO2 [32,33], and between which considerable flexibility is observed (Figure 2C–E).
Numerous structures of RSPO1 bound to the leucine-rich repeat (LRR) ectodomains of LGR4 and LGR5 have
been reported [33–35]; a structure of RSPO2 bound to the LGR5 ectodomain has also been reported [36]. In
all cases, these structures feature the LRRs of the LGR ectodomain curving around Fu2 of the RSPO. Fu1 of
RSPOs mediates the interaction with ZNRF3 [32–37] and RNF43 [32]. Due to the complementary utilisation
of the Fu1 and Fu2 domains, ternary complexes of RSPOs, LGRs and RING finger ubiquitin ligases are possible
and have been structurally characterised [36–38]. Subtle variations in how ZNRF3 and RNF43 are recognised
by LGRs are observed in the crystal structures; specifically, the LRR does not appear to directly bind ZNRF3
(although in one structure, a helix immediately after the LRR is observed to bind to ZNRF3) (Figure 2C,D),
while RNF43 is directly bound by the LRR, albeit weakly (Figure 2E).

Secreted Frizzled-related proteins (sFRPs)
In mammals, five sFRPs are known (sFRP1–5). These proteins feature a two-domain structure, containing an
N-terminal Fzd-type CRD Frizzled-type cysteine-rich domain (CRD), and a C-terminal netrin-like domain (NLD)
[39]. The exact mechanism by which sFRPs function as Wnt signalling inhibitors is still under investigation (in par-
ticular, the importance of the NLD in inhibition), but it is widely believed they act as inhibitors by binding Wnt
proteins using their CRD, thus preventing the ability of Wnts to bind Fzds and initiate Wnt signalling [40].
Structural knowledge of sFRPs and related proteins is presently limited, with only two such structures reported
(Figure 3): the mouse sFRP3 CRD [41] and the Xenopus Sizzled protein [42] (Figure 3A). The mouse sFRP3 CRD
— along with the mouse Fzd8 CRD — were the first structures of Fzd-type cysteine-rich domains to be charac-
terised. The Sizzled structure is of particular interest as it is the only structure of an sFRP-related protein to feature
both the CRD and NLD, providing insight into how the two domains may co-ordinate to modulate Wnt signalling.

Wnt inhibitory factors (WIFs)
WIFs inhibit Wnt signalling by directly binding the Wnt lipid moiety, to prevent Fzd receptor binding, and
prevent Wnt signalling [43]. The structure of the WIF domain of WIF-1 was initially determined by NMR,
revealing an immunoglobulin-like fold and the location of the putative lipid-binding site [44] (Figure 3B). The
site was subsequently confirmed by X-ray crystallography, as well as the involvement of WIF epidermal growth
factor-like domains in binding glycosaminoglycans [45].

Notum
Notum is an extracellular deacetylase that removes O-lipidation from Wnt proteins, thus deactivating them.
The structural biology of Notum has primarily been elaborated by a single extensive study [46], wherein struc-
tures of human and Drosophila Notum bound to O-palmitoleylserine, a heparin disaccharide, and the heparin
analogue sucrose octasulfate were determined (Figure 3C). O-palmitoleylserine is bound by Notum at a hydro-
phobic cavity deep in the structure. Although a complex with full length Wnt was not determined, the study
suggested that the formation of a Wnt-Notum complex is facilitated by heparin binding.

Dickkopfs (DKKs)
Four mammalian DKKs are known (DKK1-4). These proteins feature two CRDs of a distinct type to that
found in sFRPs and Fzds, and primarily act to block canonical Wnt signalling by binding to LRP family
co-receptors [47]. DKK also facilitates the Kremen-mediated endocytosis of LRP5/6 [48]. The majority of DKK
structures have been determined in complex with LRPs, which will be covered later in the review. Only one
structure of an isolated DKK CRD has been determined, that of the second CRD of the mouse DKK2
(Figure 3D) [49].

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).1768

Biochemical Society Transactions (2020) 48 1765–1780
https://doi.org/10.1042/BST20200243

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/48/4/1765/892019/bst-2020-0243c.pdf by guest on 24 April 2024

https://creativecommons.org/licenses/by/4.0/


Kremens
In conjunction with DKKs, Kremens facilitate blocking of canonical Wnt signalling by promoting the endo-
cytosis of LRPs. The structure of the Kremen1 ectodomain revealed a triangular arrangement of its Kringle,
WSC and CUB domains [50] (Figure 3E). The Kringle and WSC domains bind DKK at the opposite face to its
LRP-binding interface, while the CUB domain mediates Kremen1 dimerisation in a structure obtained from
one of the crystal forms [50]. The WSC domain can also mediate dimerisation (Figure 3E).

Structure knowledge of Wnt receptors and co-receptors
Frizzleds (Fzds)
Together with the related Smoothened receptor, which mediates Hedgehog signalling, the Frizzleds form a class
of G protein-coupled receptors that feature a seven-helical transmembrane domain (as per other GPCRs) and a
distinctive cysteine-rich ectodomain (CRD) used to bind ligands. The structures of the CRDs of Fzd2 [51],
Fzd4 [30,31,52,53], Fzd5 [54,55], Fzd7 [52,54–56] and Fzd8 [41,52,57] are presently represented in the Protein
Data Bank; only a single Fzd transmembrane domain structure, that of Fzd4 [58], is presently known
(Figure 4A,B). No structures featuring both the CRD and TM regions of Fzds are presently available. However,

Figure 3. Structures related to interactions involving secreted negative regulators of Wnt signalling.

(A) Secreted Frizzled-related proteins. Legend: grey — mouse sFRP3 cysteine-rich domain (PDB 1IJX); blue-white-red

N-to-C-terminal — Xenopus Sizzled (PDB 5XGP). (B) Wnt Inhibitory Factors (WIFs). Structures depicted include: NMR structure

of WIF domain of native human WIF1 (PDB 2D3J); WIF domain of human WIF1 bound to dipalmitoylphosphatidylcholine

(DPPC) (PDB 2YGN); WIF domain and epidermal growth factor-like (EGF-like) domain 1 of human WIF1 (PDB 2YGO); WIF

domain and EGF-like domains 1–3 of human WIF bound to DPPC and sucrose octasulfate (PDB 2YGQ). (C) Notum. Structures

depicted include: native Drosophila Notum (PDB 4UZK); native human Notum (PDB 4UYU); human Notum bound to

O-palmitoleylserine (PDB 4UZQ); human Notum bound to heparin disaccharide (ΔUA(2S)α1-4GlcNS(6S) (PDB 4UYW). (D) NMR

structure of mouse Dickkopf-2 (PDB 2JTK). Structure coloured from N-to-C-terminal by blue-white-red gradient. (E) Dimer

formation by Kremen1. Monomeric Kremen1 (PDB 5FWU) is depicted as red-to-blue N-to-C terminal rainbow, with positions of

second molecule in dimeric Kremen1 forms (PDB 5FWV, 5FWS) show as white/grey relative to monomeric form.
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the structural biology of the Fzds can be inferred from that of the more extensively structurally characterised
Smoothened [59–66]. Of particular note is the recent determination of Smoothened in an active conformation
bound to a G protein, revealing a similar opening of the intracellular regions of the receptor to that observed in
other classes of GPCRs; such opening was earlier inferred to occurred in Fzds [67].

Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6)
LRP5 and LRP6 function as Wnt ligand co-receptors in canonical Wnt signalling, and are antagonised by
DKKs and Kremens. The ectodomain of LRP6 has been extensively structurally characterised and is primarily
defined by the presence of four 7-bladed β-propellers followed by EGF-like domains (P1E1, P2E2, P3E3, P4E4)
(Figure 4C). The structure of the combination of the LRP6 P1E1 and P2E2 regions [68], as well as that of the
P3E3 and P4E4 regions [68–70], have been determined by X-ray crystallography, while the structure of the
complete ectodomain has been determined by electron microscopy [69,71]. DKK1 has been structurally
demonstrated to bind at the P1E1 [72] and P3E3 [50,68,70] regions, with Kremen binding on the opposite face
of DKK to LRP, allowing formation of a ternary complex (Figure 4D).

Structural knowledge of intracellular proteins and
complexes mediating Wnt signalling
Dishevelleds (Dvls)
Dvls feature three ordered domains: an N-terminal DIX domain, promoting Dvl oligomerisation into signalo-
somes, as well as mediating Axin binding; a PDZ domain, facilitating interactions with various proteins as well
as weakly contributing to Fzd binding (although demonstrated to be dispensable for canonical Wnt signalling
[73]); and a DEP domain, facilitating high affinity interaction with Fzds [74], as well as Fzd endocytosis [75].
These domains of Dvl1 and Dvl2 have been the focus of all currently published structures.
Structural characterisation of wildtype and mutant DIX domains of human Dvl2, mouse Dvl1 and mouse Dvl2

reveal in all instances the formation of a superhelical oligomeric structure [76–79]; the pitch of the superhelix
varies appears to vary according to the specific DIX domain being examined, as well as through the introduction
of interface mutants (Figure 5A). The variety of Dvl PDZ structures determined illustrate the flexibility of the
domain’s binding pocket to accommodate various ligands (Figure 5B) [80–83]. In particular, a series of structures

Figure 4. Structures related to transmembrane proteins.

(A) Frizzled-4 model generated by overlay of Frizzled-4 cysteine-rich domain (CRD) bound to palmitoleic acid (PDB 5UWG) and Frizzled-4

transmembrane (TM) region (PDB 6BD4) to Smoothened bound to cholesterol (PDB 5L7D; transparent grey). (B) Representative Frizzled CRD

structures and complexes. Structures depicted include: native mouse Fzd8 CRD (PDB 1IJY), native human Fzd7 (PDB 5T44), human Fzd7 bound to

15E-tetracos-15-enoic acid (PDB 5URV), human Fzd5 bound to β-octylglucoside (PDB 5URZ), human Fzd5 bound to palmitoleic acid (PDB 5URY).

(C) Atomic structure of LRP6 ectodomain constructed from fitting X-ray structures of P1E1 and P2E2 regions (PDB 4DG6) and the complex of DKK1

with P3E3 and P4E4 regions (PDB 3S2K) to the electron microscopy structure (PDB 5GJE). Legend: red-to-blue rainbow — LRP6 N-to-C-terminal;

grey — DKK1. (D) LRP6–DKK-Kremen interactions. LRP6–DKK1–Kremen1 complex (PDB 5FWW) depicted in colours; LRP6–DKK1 complex (PDB

3S2K), unbound DKK1 (PDB 2JTK) and unbound Kremen1 (PDB 5FWT) overlaid to PDB 5FWW and depicted in transparent grey.
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Figure 5. Structures related to cytoplasmic proteins and interactions.

(A) Dvl DIX domain oligomeric structures. (B) Dvl PDZ domain. Structures represented include: native mouse Dvl1 PDZ (PDB 1MC7), human Dvl2

PDZ in complex with C1 inhibitory peptide (PDB 3CBX), human Dvl2 PDZ in complex with N1 inhibitory peptide (PDB 3CBY), human Dvl2 PDZ in

complex with N2 inhibitory peptide (PDB 3CBZ), human Dvl2 PDZ in complex with N3 inhibitory peptide (PDB 3CC0). The structure of the N2

complex with Dvl2 PDZ was inferred via the generation of a symmetry-related dimer. Selected residues with similar chemical functionality across

multiple peptides — loosely highlighting how Fzd KTxxxW motifs may be recognised by Dvl PDZ domains — are shown as sticks. (C) Dvl DEP

domain. Structures represented include: native mouse Dvl1 DEP domain (PDB 1FSH); human Dvl2 DEP domain dimer crystallised from dimeric

fraction (PDB 5SUY). (D) Axin DIX domain. Structures represented include: rat Axin homodimer (PDB 1WSP); human Axin-Dvl2 heterodimer (PDB

6JCK). Each molecule coloured from N-to-C-terminal in blue-to-red/cyan-to-magenta gradient. (E) Axin RGS repeat in unbound (PDB 1DKS) and

APC-bound (PDB 1EMU) states. (F) Mouse tankyrase-axin complex (PDB 3UTM). Each tankyrase monomer is coloured from N-to-C terminal as

blue/red to white gradient. Dashes indicate missing portions of the axin structure. (G) Native β-catenin structures. (H) Complexes of interactions of

cytoplasmic β-catenin. Structures represented include: human β-catenin bound to Xenopus Axin (PDB 1QZ7); mouse β-catenin bound to an APC

fragment (PDB 1JPP); human β-catenin bound to a phosphorylated human APC fragment (PDB 1TH1). (I) APC N-terminal coiled-coil region

(residues 2–55) (PDB 1DEB). Each chain coloured from N-to-C terminal as blue/red to white gradient. (J) APC N-terminal helical region (residues

126–250) (PDB 1M51). Coloured from N-to-C terminal as blue-white-red gradient. (K) APC armadillo repeat. Structures represented include: native

APC (PDB 3AU3 and 3T7U); APC in complex with Amer1-A1 (PDB 4YJE); APC in complex with Amer1-A2 (PDB 4YJL); APC in complex with

Amer1-A4 (PDB 4YK6). (L) β-TrCP-Skp1-β-catenin complex (PDB 1P22). Phosphate-contacting residues in β-TrCP are shown green.

Phosphorylated β-catenin residues and their contacts in β-TrCP shown as sticks. (M) GSK3β complexes elaborating Wnt signalling. Structures

represented include: apo-GSK3β (PDB 1H8F); GSK3β bound to N-terminal autoinhibitory phosphopeptide (pS9) and Axin (PDB 4NM3); GSK3β

bound to phosphorylated LRP6 c-motif and Axin (PDB 4NM5); GSK3β bound to phosphorylated LRP6 e-motif and Axin (PDB 4NM7). Bound ADP,

phosphorylated residues on peptides and Arg96, Arg180, Lys205 and Tyr216 shown as sticks. Magnesium shown as green spheres.
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of the human Dvl2 PDZ in complex with several peptides derived from phage display suggests how Dvl PDZ
domains may recognise the C-terminal KTxxxW motifs contained in Fzds [81]. The structure of the mouse Dvl1
DEP domain was the first of any Dvl domain to be solved, demonstrating a fold exhibiting a strong electric
dipole suggested to facilitate membrane targeting [84]. While the Dvl DEP domain has been illustrated to afford
a key role in directly binding Fzds [74], the most recent structural evidence for any Dvl DEP domain — that of
the human Dvl2 in a domain-swapped dimeric configuration — illustrate a potential role for the DEP domain in
assembling Wnt signalosomes, as well as in mediating signal directionality [85] (Figure 5C).

Axin and tankyrase
Axin, like Dvl, contains a DIX domain which can undergo head-to-tail oligomerisation (Figure 5D). Recently, a
complex between the Axin DIX domain and the Dvl2 DIX domain has been determined [86], revealing a
similar structure of the Axin-Dvl heterodimer compared with both the Axin DIX homodimer [87] and Dvl
homomer structures [76–79]. Although extended heterooligomer structures have not been demonstrated, these
are presumed to form a superhelical structure with a varied pitch compared to the currently determined Dvl
DIX homooligomer structures. Axin also directly interacts and has been structurally characterised with APC
[88], GSK3β [89], β-catenin [90] and tankyrase. With the exception of its interaction with APC (Figure 5E),
Axin utilises short segments to interact with these proteins (Figure 5F,H,L). The complex of Axin with the tan-
kyrase ankyrin repeat reveals that the N-terminal of Axin binds to tankyrase in a 1:2 fashion (Figure 5F) [91].

β-catenin
The structures of the armadillo repeat regions of human [92], mouse [93] and zebrafish [92] β-catenin have
been characterised, revealing a relatively conserved and remarkably rigid structure (Figure 5G). Complexes of
this region of β-catenin with APC [90,94,95] and axin [88,96,97] have also been determined (Figure 5H). Axin
utilises a short helical fragment to bind to armadillo repeats 3 and 4 of β-catenin, while APC uses an extended
region to interact with approximately the entire length of β-catenin. Although part of APC binds to β-catenin
at an overlapping region to Axin, APC does not share Axin’s helical secondary structure in this location, indi-
cating β-catenin’s ability to bind peptides distinct in sequence and structure. N-terminal phosphorylation of
β-catenin facilitates its destruction, and complexes of the phosphorylated N-terminal of β-catenin with the SCF
ubiquitin ligase β-TrCP-Skp1 have been determined. These indicate that the phosphorylated N-terminal of
β-catenin interacts with β-TrCP at the opposite face of the β-propeller to Skp1, with pSer33 bound by the first
and second blades of the β-propeller and pSer37 bound by the fifth blade (Figure 5I) [98,99].

Adenomatous polyposis coli protein (APC)
APC is a very large protein comprising, in simplest terms, an N-terminal leucine-rich region (residues 1–730)
and a C-terminal serine-rich region (residues 731–2832). Short fragments from the C-terminal serine-rich
region have been structurally demonstrated in complex with a range of proteins, including axin (Figure 5E),
β-catenin (Figure 5H), the Src-homology 3 domain of DDEF1 [100], and the PDZ1 [101] and PDZ2 [102]
domains of DLG1. The N-terminal leucine-rich region contains at least three helical regions that have been
structurally characterised: an N-terminal dimeric coiled-coil domain (residues 2–55) [103] (Figure 5J), an
helical region forming a monomeric coiled-coil (residues 126–250) [104] (Figure 5K) and a series of armadillo
repeats (residues 453–767) [105–109]. The N-terminal dimeric coiled-coil is poorly stable in isolation, suggest-
ing that the dimerisation motif may extend beyond the first 55 amino acids of APC, although it is unclear
whether the monomeric coiled-coil that follows contributes to dimerisation. The APC armadillo repeat region
has been structurally characterised with several fragments of Amer1 (Figure 5L). These structures reveal that
Amer1 fragments use a relatively functionally conserved motif to bind APC, consisting of Ser/Thr/Tyr to bind
armadillo repeats 4–6 and a small polar amino acid (Gly/Ser/Cys) followed immediately by a glycine and a
negatively charged amino acid to bind repeats 2–4. Hydrophobic amino acids (typically a longer chain aliphatic
amino acid followed by alanine) bind repeats 1–3.

Glycogen synthase kinase 3β (GSK3β)
While GSK3β has been extensively structurally characterised as part of many medicinal chemistry research pro-
grams, a small selection of structures provide specific insight into its role in modulating Wnt signalling
(Figure 5M). X-ray crystal structures of GSK3β in complex with the minimal binding segment of Axin [89]
illustrate that Axin utilises an α-helical segment to bind GSK3β. The structures of GSK3β bound to its
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phosphorylated autoinhibitory peptide and phosphorylated LRP6 motifs illustrate the importance of conform-
ational changes in regulating GSK3β function and how primed substrates are recognised by GSK3β [15].
Specifically, the loop from residues 89-95 moves from the open conformation observed in the unbound state
[110] to clamp onto the peptide, the phosphorylated residue is bound by three positively charged residues —
Arg96, Arg180 and Lys205 — and Tyr216 rotates to facilitate peptide access to the active site.

Structural knowledge of intranuclear proteins and
complexes mediating Wnt signalling
Nuclear β-catenin
Structures of TCFs [111–114] and LEF-1 [115] in complex with β-catenin (Figure 6A) reveal that β-catenin
wraps around the N-terminal of these proteins, utilising approximately the full length of the armadillo repeats
to bind the transcription factors, similar to how APC is bound by β-catenin (Figure 5H). Bcl9 binds to the first
armadillo repeat of β-catenin using a short helix located between proline-rich stretches of its sequence, while
the β-catenin inhibitor ICAT uses a small N-terminal helical domain to bind the final armadillo repeats of

Figure 6. Structures related to intranuclear proteins and interactions.

(A) Nuclear β-catenin interactions. Structures represented include: human β-catenin bound to mouse ICAT (PDB 1LUJ), mouse

β-catenin bound to phosphorylated mouse LEF1 (PDB 3OUX), human β-catenin bound to Xenopus TCF3 (PDB 1G3J), ternary

complex of human β-catenin, human TCF4 and human Bcl9 (PDB 2GL7). (B) Mouse LEF1 high mobility group domain (blue–

red N-to-C-terminal) bound to DNA (yellow) (PDB 2LEF). (C) Pygopus–Bcl9 interactions. Structure represented include:

Drosophila Pygopus–Legless complex (PDB 3ZPV), human Pygopus1–Bcl9 complex (PDB 2VPB), human Pygopus1–Bcl9

dimer of dimers (PDB 2VPD), human Pygopus1–Bcl9-histone H3 tail ternary complex (PDB 2VPG). (D) TLE1 WD repeat dimer

(PDB 1GXR). Legend: blue-white — molecule 1 N-to-C terminal; red-white — molecule 2 N-to-C terminal. (E) TLE1 Q domain

tetramer (PDB 4OM2). Each chain coloured from N-to-C terminal in blue/red/yellow/green to white. (F) Assembly of the ChiLS

complex in 4:2 stoichiometry based on available structures (PDB 6TYD and PDB 6S9S). (G) Structure of nucleosome-bound

human BAF complex (PDB 6LTJ).
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β-catenin, and a C-terminal extension that overlaps with much of the TCF/LEF binding site, thus blocking
TCF/LEF binding [97,116]. TCFs and LEFs utilise a high mobility group (HMG) box domain to bind DNA;
the structure of the mouse LEF-1 HMG box domain bound to DNA was one of the earliest structures of such a
domain, as well as a DNA–HMG box complex, and illustrates the bending of the DNA double helix character-
istic of DNA–HMG box interactions (Figure 6B) [117].

B-cell CLL/lymphoma 9 protein (Bcl9) and Pygopus
Bcl9 forms a ternary complex with β-catenin and TCF transcription factors, binding at a distinct site on
β-catenin to TCF, as well as other β-catenin-interacting proteins [111,118]. The function of Bcl9 is enhanced
via binding to Pygopus proteins and their homologues, wherein a helical segment of Bcl9 interacts with the
PHD-type zinc finger of Pygopus [119,120]; the Bcl9-like protein (BCL9L) forms a similar complex with
Pygopus [121,122]. The human Bcl9–Pygopus heterodimer has been characterised in complex with a methy-
lated histone fragment, illustrating the importance of Trp366 in Pygopus in interacting with methylated argin-
ine and lysine; this residue is substituted for a phenylalanine in Drosophila Pygopus and likely facilitates similar
interactions. Additionally, Bcl9 and Pygopus have been demonstrated to form a dimer of heterodimers; such an
arrangement appears compatible with the binding of methylated histones (Figure 6C).

Groucho family proteins
Structures of the human Groucho family protein TLE1 have been obtained for its C-terminal WD repeat
region, a seven-bladed β-propeller forming a dimer mediated by its N-terminal segment [123,124] (Figure 6D).
The N-terminal Q domain, which mediates TCF binding, forms a dimeric coiled coil which in turn dimerises
in a head-to-head fashion to give the active tetrameric species [125] (Figure 6E).

ChiLS complex
The biological assembly of the LUFS domain of the human SSDP2 revealed a tightly packed tetramer formed
by dimerisation of dimers [126]. The biological assembly of the Xenopus LDB1 bound to darpin 10 illustrates
the dimerisation of LDB proteins [21]. The biological assembly of the human SSDP2 in complex with the
human LDB1 illustrates a 2:1 stoichiometry between SSDP2 and LDB1, with LDB1 binding at the tetrameriza-
tion interface of SSDP2 [127]; this in turn suggests that the SSDP2 tetramer previously determined may repre-
sent an inactive state. Judicious overlay of the presently determined structures allows the development of a
structural model of the ChiLS complex, displaying the determined 4 : 2 stoichiometry between the SSDP and
LDB components [21] (Figure 6F).

BAF complex
The BAF complex is a very large complex comprised of numerous subunits that functions as a Wnt transcrip-
tional co-activator. The SWI/SNF-related matrix-associated actin-dependent regulator of chromatin (SMARC)
subfamily members, which are key components of this complex, have been the subject of numerous structural
biology [128–130] and medicinal chemistry [131–133] efforts. Very recently, the structure of a nucleosome-
bound human BAF complex has been determined [134] (Figure 6G). This structure reveals that SMARCC2
forms a dimeric coiled-coil, with which helical regions of SMARCD1 and SMARCE1 interact and which likely
forms a scaffold for the complex. SMARCF1 contains an armadillo repeat-like region that interacts with this
helical scaffold on one face and with the N-terminal domain of SMARCB1 with its opposing face. The
SMARCB1 C-terminal domains interact with the SWIRM domains of both SMARCC1 molecules, an inter-
action that appears further stabilised by BAF45D. This assembly positions SMARCB1 to interact directly with
histones H2A and H2B on one face of the nucleosome. SMARCA4 adopts a highly extended conformation,
interacting with almost all subunits of the complex, cradling the opposite face of the nucleosome to SMARCB1
with its helicase domains. The extended conformation and nucleosome-binding by SMARCA4 appear to be
supported through interaction with actin-like protein 6A (BAF53) and cytoplasmic actin 1 (ACTB).

Future challenges in the structural biology of Wnt signalling
Wnt structural biology has considerably grown in the past 20 years, however, there are still a number of
notable gaps in knowledge. These include the structure of an active Wnt signalosome and/or components
thereof (e.g. full length Fzd, Fzd in an active conformation, Fzd bound to Dvl), an overall view of the Wnt
degradosome, and a comprehensive understanding of the structure of the Wnt enhanceosome. Cryoelectron
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microscopy, which has facilitated the structural determination of many targets that were typically challenging
or thought impossible by X-ray crystallography (including very large protein complexes and membrane-bound
proteins in various states), has the potential to fill these gaps in structural knowledge of Wnt signalling.
Nonetheless, significant protein engineering is likely to be required to achieve constructs sufficiently stable for
structure determination, as has facilitated the elaboration of membrane protein structure and pharmacology.
Computational approaches may also be valuable to fill some of these gaps — in particular, the combinatorial
range of potential protein–protein interactions regulating the earlier stages of the pathway. The present struc-
tural data on canonical Wnt signalling affords numerous opportunities for structure-based drug design, with
the recent growth allowing further dissection and effective targeting of this fascinating pathway.

Perspectives
• Canonical/β-catenin-dependent Wnt signalling is a pathway of enormous interest as a poten-

tial target in cancer treatment, as well as being crucial in the early stages of development.

• Structural knowledge of proteins and interactions involved in facilitating and antagonising
canonical Wnt signalling has grown considerably over the past 20 years.

• Major frontiers to conquer relate primarily to understanding the assembly of large multiprotein
complexes mediating Wnt signalling — in particular, the structure, activation and interactions
of membrane receptors, as well as the assembly of nuclear proteins.
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