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Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene are associated with familial
and sporadic cases of Parkinson’s disease but are also found in immune-related disor-
ders such as inflammatory bowel disease, tuberculosis and leprosy. LRRK2 is highly
expressed in immune cells and has been functionally linked to pathways pertinent to
immune cell function, such as cytokine release, autophagy and phagocytosis. Here, we
examine the current understanding of the role of LRRK2 kinase activity in pathway regula-
tion in immune cells, drawing upon data from multiple diseases associated with LRRK2
to highlight the pleiotropic effects of LRRK2 in different cell types. We discuss the role of
the bona fide LRRK2 substrate, Rab GTPases, in LRRK2 pathway regulation as well as
downstream events in the autophagy and inflammatory pathways.

OPEN ACCESS

Introduction

The leucine-rich-repeat kinase 2 (LRRK2) gene encodes for a large, multidomain protein encompassing
two enzymatic functions at its core. The catalytic core consists of the GTPase domain of the protein,
and the serine/threonine kinase domain, which are surrounded by protein-protein interaction
domains. The N-terminal harbours the armadillo, the ankyrin and the leucine-rich-repeat (LRR)
domains. At the C-terminal, there is the WD40 domain, which has been demonstrated to be crucial
for protein folding [1]. Given the multiple, highly diverse enzymatic and protein-interacting domains, ?
it is likely that LRRK2 may have different binding partners in different cell types and be instrumental
in many different cellular pathways.

Mutations in the LRRK2 gene are the most frequent cause of familial Parkinson’s disease (PD) [2],
with seven pathogenic mutations, which cluster around the catalytic domains of the protein, identified.
Clinically, mutant LRRK2-PD patients are often considered indistinguishable from sporadic patients.
Therefore, deciphering the role of LRRK2 in PD pathogenesis may reveal common pathological
mechanisms underlying idiopathic PD and is consequently of great research importance.

LRRK?2 is highly expressed in immune cells and this expression is tightly regulated by immune
stimulation. As well, LRRK2 has been biochemically linked to the pathways regulating inflammation
as well as autophagy and phagocytosis. There is now mounting evidence that both systemic and
central nervous system (CNS) inflammation play a role in PD pathophysiology [3]. Furthermore, poly-
morphisms in the LRRK2 gene have now been linked to inflammatory diseases such as inflammatory
bowel disease (IBD), tuberculosis (TB) and increased susceptibility to leprosy, highlighting a critical
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LRRK2 expression in immune cells

The activation of immune cell subsets is critical for a proper and effective immune response to pathogens. For
example, activation of T cells leads to the development of cell-mediated immune mechanisms and increased
antibody responses which are produced by activated B cells [4]. Human monocytes have been subdivided into
different populations based on the surface expression of CD14 and CD16. CD14" classical monocytes have
been observed to be phagocytic with decreased inflammatory attributes, whilst CD16" non-classical monocytes
have been reported to display inflammatory characteristics and display properties for antigen presentation [5].
Activation of immune cells is a healthy response serving to protect and repair the body, however, chronic acti-
vation and therefore chronic inflammation is deleterious and damaging.

LRRK2 is a largely ubiquitously expressed protein, and is most abundant in the brain, kidney and
lungs. However, increased expression in immune cells, specifically in response to pro-inflammatory signals,
has been observed in many immune cell types, strongly implicating LRRK2 as a regulator of the immune
response.

Increases in LRRK2 mRNA and protein expression have been observed in response to interferon-y (IFN-vy)
treatment in human B cells, T cells, macrophages [6-9] and non-classical monocytes [9]. Similar increases in
LRRK2 protein expression have been observed in response to the toll-like receptor 4 (TLR4) ligand, lipopoly-
saccharide (LPS) in bone-marrow-derived macrophages (BMDMs) [10] and primary murine-microglia [11]
and the cytokine IL-1f [12] in human umbilical vein endothelial cells (HUVECs). Microglia have also been
shown to up-regulate LRRK2 protein expression following cranial injection with LPS, as well as increased
kinase activity [11].

It has been reported that PD-associated LRRK2 mutations exacerbate LRRK2 expression levels in response to
inflammatory stimuli, suggesting a role of LRRK2 in immune cells in PD [13]. This is supported by the obser-
vation that the loss of Lrrk2 decreases pro-inflammatory myeloid cells in the brains of rats and decreases neu-
rodegenerative responses to both LPS and a-synuclein [14]. LRRK2 is also up-regulated in unstimulated cells in
sporadic-PD neutrophils [15], B cells, T Cells, and CD16*/CD14™ non-classical monocytes [7]. Furthermore,
inhibition of LRRK2 with multiple kinase inhibitors has been shown to decrease CD14, CD16 and MHC-II
expression in human immune cells, suggesting that LRRK2 is playing a significant role in the activation of cells
in response to inflammatory stimulation in a kinase-dependent manner [8].

LRRK2 kinase activity in disease

The increased kinase activity of LRRK2 mutants has been linked to the pathological function of LRRK2 in
disease. However, when considering different diseases, cell types, and mutations, the role of LRRK2 kinase
activity may not be quite as simple as originally thought (Table 1).

Inflammation and LRRK2 in PD

Genome-wide conjunctional analysis has previously identified 17 novel loci that overlap between PD and auto-
immune diseases, including known PD loci adjacent to GAK, HLA-DRB5, LRRK2 and MAPT for rheumatoid
arthritis and IBD [30]. Furthermore, peripheral pro-inflammatory cytokine levels are higher in a percentage of
asymptomatic subjects carrying the G2019S-LRRK2 mutation [16], which consistently increases LRRK2 kinase
activity [31-35], suggesting an early role of inflammation in a disease that may be driven by increased kinase
levels. Interestingly, systemic LPS administration triggers significant increases in peripheral cytokines in mice
expressing R1441G-LRRK2 that exacerbate neuroinflammation in the brain, increases LRRK2 expression in
neurons and causes neurodegeneration [17]. The R1441G/C/H mutations, which reside in the GTPase domain,
fail to consistently increase LRRK2 kinase activity, with both increases [35-38] and no changes [33,34,39]
reported. The role of LRRK2 kinase activity in inflammation observed in these R1441G-LRRK2 mice is there-
fore unclear.

The effect of LRRK2 kinase inhibitors, LRRK2 knockdown or kinase-dead mutants has resulted in conflict-
ing results in different immune cell types (Table 1). For example, data from HUVECs expressing the
G2019S-LRRK2 mutation demonstrate an increase in levels of VCAM-1, which is essential for immune cell traf-
ficking, in response to IL-1P [12]. This phenotype was not recapitulated with the expression of the kinase-dead
mutant, K1347A, indicating a kinase-dependent mechanism for LRRK2 in immune responses. This is further
supported with evidence from knockout models suggesting a dampened immune response with the loss of
LRRK2. For example, loss of Lrrk2 in microglia increases o-synuclein uptake and clearance relative to microglia
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Table 1 Summary of results on the role of LRRK2 kinase activity in disease
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Cell-type Methods Results Refs.
Parkinson’s disease
Asymptomatic patient G2019S (GoF) Increased pro-inflammatory cytokines [16]
serum
Peripheral leukocytes and R1441G Increased pro-inflammatory cytokines in the periphery [17]
serum, whole brain/midbrain and increase CNS inflammation and neurodegeneration
in response to LPS
HUVECs G2019S (GoF) Increased VCAM-1 expression in GS in response to [12]
K1347A (KD) IL-1B
Microglia Lrrk2 KO Increased a-synuclein uptake and clearance [18]
Primary mouse microglia Lrrk2 KD RNAI Decreased pro-inflammatory cytokines [11]
Kinase inhibition
Primary mouse microglia Lrrk2 KO Decreased pro-inflammatory cytokines [19]
Kinase inhibition
BMDMs Lrrk2 KO No changes in cytokine release [10]
BMDMs Lrrk2 KO No changes in cytokine release [20]
Peripheral myeloid Lrrk2 KO Decreased phagocytosis in KO [21]
G2019S (GoF) Increased phagocytosis in GS
Leprosy
BMDMs M2367T (GoF) Increased pro-inflammatory cytokine transcription [22]
— R1628P (GoF) Variant is T1R protective, PD risk factor [23]
Bacterial infections
BMDMs Kinase inhibition Increased Mtb control [24]
Lrrk2 KO
Peritoneal macrophages Lrrk2 KO KO: Impaired ST control [25]
G2019S GS: Increased caspase-1 activation and ST control
Paneth cells Lrrk2 KO Increased susceptibility to Lm [26]
Splenocytes, BMDMs, G2019S (GoF) ST: GS increased bacterial control and survival
whole brain/midbrain D1994S (KD) Reovirus-induced encephalitis: GS increased mortality,
ROS and a-synuclein in brain
Inflammatory bowel disease
— N2081D (GoF) Increased risk of CD [27]
— G2019S (GoF) Increased in CD patients [28]
BMDMs Lrrk2 KO Increased colitis severity [22]
BMDMs Lrrk2 Increased colitis severity ameliorated by kinase inhibition [29]
overexpression

Kinase inhibition

Abbreviations: GoF, Gain-of-function; KD, Kinase-dead; ST, Salmonella typhimurium; Lm, Listeria monocytogenes; ROS, reactive oxygen species.

from wild-type (WT) mice [18]. Furthermore, LRRK2 knockdown or kinase inhibition in primary microglia
have been shown to decrease the production of the pro-inflammatory cytokines TNF and IL-1f [11,19].
However, many reports observe no differences in cytokine release with Lrrk2-knockout in BMDMs [10,20].
Interestingly, knockout of Lrrk2 decreases phagocytosis in peripheral myeloid cells, whilst G2019S-LRRK2
expression increases phagocytosis in these cells [21]. Collectively, these data suggest LRRK2 may play distinct
roles in immune cells in a cell-type dependent manner. Interestingly, an opposing role of LRRK2 in peripheral
and CNS innate immunity has recently been suggested [3], and future research would benefit from directly
comparing immune cells from the periphery and CNS.
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LRRK2 in leprosy and the lesson of pleiotropy

Leprosy is a chronic dermato-neurological infectious disease caused by Mycobacterium leprae (M. Laprae). It
has been demonstrated that LRRK2 variants are significantly associated with leprosy [40]. However, results
evaluating the association of LRRK2 variants with leprosy susceptibility have been inconsistent [41-43]. One
complication of the disease is excessive inflammation termed as type-1 reactions (T1R) which can lead to
pathological immune responses directed against peripheral nerve cells [44]. Eighteen single nucleotide poly-
morphisms (SNPs) in LRRK2 have been shown to preferentially associate with TIR [45], which may underlie
the previously reported inconsistencies. Specifically, one variant identified, M2367T, lies in the WD40 domain
of LRRK2 and has previously been shown to increase LRRK2 protein turnover and therefore decrease enzym-
atic activity [46]. This subsequently increases pro-inflammatory cytokine transcription via NFAT translocation
to the nucleus [22], suggesting that LRRK2 pathophysiology in leprosy may be due to a loss or decrease in
function.

Intriguingly, antagonistic pleiotropic effects of LRRK2 in leprosy T1R and PD have recently been described.
The RI1628P-LRRK2 gain-of-kinase function mutation has been shown to be protective for T1R but has been
reported as a risk-variant for PD [23]. It was hypothesized that a reduction in apoptosis caused by the R1628P
mutation underlies this effect, with apoptotic cells releasing multiple anti-inflammatory mediators [47] whilst
also increasing inflammation if not cleared efficiently [48]. This would suggest that the lower yield of apoptotic
debris in leprosy patients may protect against T1R whilst the reduction in anti-inflammatory molecules result-
ing from abrogated apoptosis is disease-promoting in the brain. This data, therefore, implies potential opposing
effects of LRRK2 kinase activity on inflammation in the peripheral and CNS.

LRRK2 in tuberculosis and other bacterial infections

LRRK2 has been implicated in several bacterial infections. Interestingly, there are contrasting reports between
the effects of kinase inhibition on different bacterial infections, with LRRK2 kinase inhibition enhancing the
restriction of some bacteria or increasing susceptibility to infection for others.

TB is an infectious disease caused by the intracellular pathogen Mycobacterium tuberculosis (Mtb).
Numerous SNPs in LRRK2 are associated with susceptibility to mycobacterial infection [40,45]. A statistical
meta-analysis of nine published datasets has recently demonstrated that LRRK2 is a differentially expressed
gene (DEG) in association with TB [49]. More specifically, LRRK2 also interacts with seven of the other DEGs
identified in this study, including two components in the NRON complex through which LRRK2 inhibits the
immune response transcription factor NFAT1 [22].

It has recently been demonstrated that LRRK2 kinase activity negatively regulates phagosome maturation via
the recruitment of the Class III phosphatidylinositol-3 kinase (PI3K) complex and Rubicon, with kinase inhib-
ition and LRRK2 deficiency enhancing Mtb control and decreasing Mtb burdens [24]. In contrast with the
improved control of Mtb replication, loss of LRRK2 has been reported to impair control of the enteric pathogen
Salmonella  typhimurium via decreased NLRC4 inflammasome activation [6,25]. Intriguingly, the
G2019S-LRRK2 mutation, which increases LRRK2 kinase activity, enhanced caspase-1 activation and IL-1f pro-
duction in response to NLRC4 inflammasome activation in macrophages infected with S. typhimurium [25].
Similarly, knockout of Lrrk2 increases susceptibility to the oral infection to a different enteric pathogen,
Listeria monocytogenes [26]. Similar antagonistic pleiotropic effects of the gain-of-kinase function G2019S
mutation have recently been reported in models of sepsis and encephalitis [50]. It was observed that the
G2019S mutation controlled infection better, with reduced bacterial growth and longer survival during sepsis;
an effect which was dependent on myeloid cells and LRRK2 kinase activity. However, animals with
reovirus-induced encephalitis that expressed the G2019S mutation exhibited increased mortality, increased
reactive oxygen species and higher concentrations of o-synuclein in the brain. Such data implies potential
opposing effects of LRRK2-mediated inflammation in the CNS versus the periphery. Collectively, these data
point towards the potential of LRRK2 having pleiotropic effects on bacterial control and inflammation depend-
ent on the bacterial infection (the concept of LRRK2 being a pleiotropic actor at both the genetic and molecu-
lar level has recently been reviewed [51]).

LRRK2 in inflammatory bowel disease
IBD is composed of two major subtypes; Crohn’s disease (CD) and ulcerative colitis (UC). The two can be dis-
tinguished by the distribution of chronic inflammatory changes. UC is typically confined to the colon, whilst
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CD is known to affect both the ileum and colon, and is associated with deep, transmural inflammation.
Patients with IBD have a 22% increased risk of PD compared with non-IBD individuals [52]. With regards to
LRRK2, genetic variances and mutations in the LRRK2 gene have been demonstrated to increase the risk of
developing PD in both CD [30] and UC [52] patients.

The role of LRRK2 kinase activity in IBD is still unclear. LRRK2 has been identified by GWAS as a major
susceptibility gene for CD [53], and the gain-of-function variant, N2081D, has recently been identified and
shown to increase the risk of CD two-fold in at-risk populations [27]. The G2019S mutation, which increases
kinase activity, has been shown to be increased in CD patients in the Ashkenazi Jewish population [28].
Furthermore, the down-regulation of LRRK2 was previously shown to enhance the susceptibility to dextran
sulfate sodium salt (DSS)-induced colitis [22], suggesting a loss of LRRK2 activity may increase the risk for
inflammation in the gut. This is in agreement with increased expression in the secretory immunoglobulin A,
IgA, observed in the intestines of Lrrk2 deficient mice [54]. IgA is produced by intestinal B cells and is a
crucial factor for maintaining a healthy intestinal tract barrier in terms of pathogen elimination, and increased
IgA has been reported in patients with IBD [55]. However, in a mouse model of DSS-induced colitis, overex-
pression of the Lrrk2 gene causes increased severity in colitis, which was ameliorated with LRRK2 kinase inhi-
bitors [29]. From this data, it is still not clear if the role of LRRK2 in IBD is due to a loss- or gain-of-function.
What is apparent, however, is that LRRK2 is crucial for normal inflammatory responses, and alterations in
LRRK?2 activity or expression levels can increase inflammation in the gut.

LRRK2 and Rab GTPases in immune cells

Many proteins have been reported to be directly regulated by LRRK2, however, the number of these that have
been validated and replicated by numerous groups is small [56]. Recent studies have identified a subset of Rab
GTPases, including Rab3, Rab5, Rab7, Rab8, Rab10, Rab12, Rab35, Rab39b, Rab43 and Rab7L1, as bona fide
substrates of LRRK2 in cells [37,38,57,58].

Rab GTPases are key organizers of intracellular membrane trafficking and have been heavily implicated in a
range of neurodegenerative diseases (reviewed in detail in [59]). Intracellular membrane trafficking and the
immune function of cells are linked in multiple ways and this coordination is critical for dynamic and specia-
lized immune defences. Interestingly, these specialized immune functions include phagocytosis and phagosome
maturation, autophagy and antigen presentation [60], which have all been suggested to be regulated by LRRK2.

Phagocytosis is crucial for the clearance of dying cells and microbial pathogens. Proteomic studies have
unveiled a network of Rab proteins that are associated with phagosomes and are highly essential for their mat-
uration [61]. For example, Rab5 is present on early phagosomes where they regulate their fusion with early
endosomes [61,62]. LRRK2 has been shown to form a complex with the protein WAVE2 (Wiskott-Aldrich syn-
drome protein-family verproline 2) and colocalize with Rab5a during phagosome-early endosome fusion in
BMDMs [21]. Furthermore, G2019S-LRRK2 expression in these cells was shown to increase phagocytic activity,
potentially due to altered Rab5a activity levels. This is in contrast with a report from Lrrk2-knockout
(Lrrk2-KO) microglia, that showed increased uptake and clearance of o-synuclein with the loss of LRRK2 due
to increases in Rab5 positive endosomes [18]. Thus, it seems that LRRK2 and its interacting partners may regu-
late phagocytosis in a cell-type-specific manner.

Rab7 is typically associated with late phagosomes and facilitates the fusion of these vesicles with lysosomes.
Interestingly, many studies have demonstrated that PD-associated LRRK2 mutations have deleterious effects on
Rab7 functions. For example, G2019S-LRRK2 decreases Rab7 activity, leading to decreased degradative receptor
trafficking [63], and lysosomal defects can be rescued upon Rab7 inhibition in LRRK2-PD patient fibroblasts
[64]. A recent study has suggested that LRRK2-mediated deficits in Rab7 function are not due to direct phos-
phorylation of Rab7, but rather via the interaction between LRRK2 and it’s substrate, Rab8A [65]. Interestingly,
Rab8A has been shown to modulate TLR4-dependent immune responses [66]. This signalling pathway has
been shown to modulate phosphorylation of LRRK2 as well as its subsequent cellular localization, dimerization
and translocation to membranes [20,67,68], suggesting a bi-directional regulatory effect of LRRK2 and its Rab
substrates.

Rabl10 is known to regulate phagosomal recycling [69] and has been shown to be phosphorylated in human
peripheral blood mononuclear cells [70] and isolated human neutrophils [71] by LRRK2. Furthermore, both
PD and CD-associated pathogenic mutations and risk variants increase phosphorylation of Rab10 at the amino
acid residue threonine 73 in patient macrophages [27]. However, this increase in Rab10 phosphorylation was
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not replicated in patient neutrophils, suggesting a cell-type dependent effect of LRRK2-mediated Rab10 phos-
phorylation [15]. With regards to the functional effects of this interaction with Rab10, LRRK2 is recruited to
the lysosome upon lysosomal overload stress, alongside Rab7L1, where it stabilizes Rab10 and Rab8 through
phosphorylation [72]. Furthermore, knockout of Lrrk2 increases vacuolization and lipofuscin autofluorescence,
indicating that LRRK2 may protect against lysosomal enlargement and up-regulates lysosomal secretion during
lysosomal stress. These findings also suggest that under stress-conditions, phosphorylated Rab GTPases acquire
novel functions from those under steady-state conditions. It has been suggested that the roles of Rab8 and
Rabl0 on stressed lysosomes are different from their physiological functions documented in recycling phago-
somes [72].

Collectively, these data highlight the complex and pertinent role of the interaction between LRRK2 and Rab
GTPases in immune cell homeostasis (Figure 1). It is clear from these reports that both LRRK2 and Rab
GTPases are capable of regulating immune cell function in a cell-type-specific manner. Whether or not the
interaction between LRRK2 and different Rab GTPases is also cell-type dependent, and dependent on stress-
conditions or different immune challenges, is of high interest for future research.

Events downstream of LRRK2 in immune cells

Previous evidence has shown that LRRK2 is involved in numerous pathways, including transcription, mito-
chondrial function and neurotransmitter release. In the context of immune cells, however, two cellular path-
ways are of particular interest and will be reviewed in detail: immune signalling and autophagy.

LRRK2 and inflammatory signalling pathways

The mitogen-activated protein kinase pathways (MAPK) were among the first to be investigated as potentially
relating to LRRK2. MAPK pathways comprise of three proteins situated in a cascade, with different subtypes
leading to the activation of different effectors involved in a range of functions such as apoptosis and inflamma-
tion. LRRK2 has been shown to bind to and phosphorylate MAP2K-3, -4, -6 and -7 [73,74], with increased
kinase activity leading to hyperphosphorylation and dopaminergic neuronal death [75]. More recently, it has
been demonstrated that LRRK2 kinase activity plays a critical role in manganese-induced inflammation and
toxicity via downstream activation of MAPK signalling in both macrophages and microglia [76].

As previously discussed, LRRK2 has been shown to inhibit responses to infection via the NRON complex
[49]. Interestingly, the NRON complex inhibits NFATI1 transcription, which modulates cytokine expression.
LRRK2 has been shown to negatively modulate NFAT1 translocation to the nucleus, with LRRK2 deficiency
conferring enhanced susceptibility to experimentally induced colitis in mice due to increased inflammation
[22], highlighting converging LRRK2-mediated mechanisms between diseases.

LRRK2 has also been heavily implicated in NF-«xB signalling. A recent transcriptomics study revealed that
microglia from Lrrk2-KO mice exhibit a decreased inflammatory response with LPS or o-synuclein pre-formed
fibril (PFF) treatment [77]. Interestingly, the NF-xB transcriptional regulator, NFKBIZ, was significantly
decreased in Lrrk2-KO microglia in response to o-synuclein PFF. This is in agreement with previously reported
findings from Lrrk2-KO microglia, where increases in the inhibitory p50 homodimer was observed, leading to
an attenuated inflammatory response [19]. This was shown to be a downstream consequence of increased PKA
activity, known to be negatively regulated by LRRK2 [78]. It has also been observed that LRRK2 lies down-
stream of the B-glucan receptor, Dectin-1, leading to activation of the NF-xB components TAK1 complex and
TRAF6, increasing pro-inflammatory cytokine secretion [29]. Interestingly, Dectin-1 receptor signalling is also
known to induce the LRRK2-associated NFAT signalling pathway [79]. As well, LRRK2 has recently been
shown to phosphorylate RCANI, a protein inhibitor of calcineurin, the main activator of NFAT transcriptional
responses, leading to the increased transcriptional activity of NF-xB and IL-8 production [80].

Collectively, this data on LRRK2 in MAPK, NFAT1 NF-«xB and RCANI signalling highlights that LRRK2 is
situated downstream of multiple affecters and can regulate multiple inflammatory pathways via different
mechanisms (Figure 2).

LRRK2, autophagy and the lysosome in immune cells

The degradative pathway of autophagy plays a crucial role in regulating different aspects of the innate and
adaptive immune systems and is intrinsically linked to phagocytosis due to the convergence of both pathways
on the lysosome (Figure 1). Furthermore, due to its role in the maintenance of biological homeostasis in
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Figure 1. LRRK2 in phagocytosis and autophagy in immune cells.

(A) LRRK2 stabilizes Rab10 and Rab8 onto secretory lysosomes via phosphorylation during cellular stress. (B) LRRK2 is
recruited to autophagosomes upon LPS treatment. (C) LRRK2 inhibits autophagic flux via Beclin-1 inhibition. (D) LRRK2
phosphorylates Rab10, which is found on recycling phagosomes. (E) LRRK2 modulates phagosome fusion with early
endosomes via WAVE2 complex formation and Rab5a interaction. (F) LRRK2 phosphorylates Rab7 via the phosphorylation of
Rab8a, mediating late phagosome and lysosome function.

conditions of stress, dysregulation or disruption of autophagy has been linked to IBD [81], PD [82,83] and
host defence of Mtb [84] and other bacterial infections [85]. The macroautophagy pathway (hereby referred to
as autophagy) arises from the formation of a phagophore that engulfs cargo for degradation and encloses to
become an autophagosome. The autophagosome will then fuse with a lysosome to form mature autolysosome
at which point contents can be degraded.

LRRK?2 was first shown to regulate autophagy specifically in immune cells in 2014 where LPS-stimulation of
monocytic cell lines increased LRRK2 translocation to autophagosome membrane, with loss of LRRK2 leading
to autophagic deficits [67]. Furthermore, it has recently been demonstrated in a mouse macrophage cell line
that, upon lysosomal overload stress, LRRK2 is recruited to the lysosome, alongside Rab7L1, where it stabilizes
Rab8 and Rabl0 through phosphorylation [72]. In the same study, it was also shown that the knockout of
Lrrk2 increases vacuolization and lipofuscin autofluorescence, indicating that LRRK2 may protect against lyso-
somal enlargement and up-regulates lysosomal secretion during lysosomal stress in immune cells.

Collectively, this data suggests LRRK2 is functionally beneficial for the autophagy pathway. However, there
are contradictions in the literature. For example, Lrrk2 overexpression in mouse bone-marrow-derived dendritic
cells causes inhibition of autophagy via Beclin-1 inactivation [29]. This Beclin-1 mediated inhibition of
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Figure 2. LRRK2 and inflammatory signalling.

(A) LRRK2 regulates Mycobacterium tuberculosis control and phagocytosis via PI3K complex and Rubicon inhibition. (B)
LRRK2 regulates inflammation in response to Salmonella by forming a complex with and phosphorylating the NLRC4
inflammasome, modulating IL-1f production. (C) LRRK2 interacts with the NRON complex, mediating NFAT translocation and
LPS-induced inflammation. (D) LRRK2 lies downstream of the Dectin-1 receptor and modulates NF-xB-signalling via TRAF6
and TANK1 interaction. (E) LRRK2 mediates NF-kB-signalling via PKA inhibition. (F) LRRK2 phosphorylates RCAN1 regulating
NF-xB and NFAT signalling (G) LRRK2 phosphorylates key components of the MAPK pathway, MAP2K3/6 and MAP2K4/7,
leading to p38 and JNK nuclear translocation and increased inflammatory responses.

autophagy by LRRK2 has previously been reported in astrocytes [86]. One consequence of autophagy inhibition
mediated by LRRK2 signalling is that it leads to increased LRRK2 [29] and therefore may further exacerbate
LRRK2-mediated inflammation. Interestingly, there is evidence that NF-xB can inhibit autophagy via the
up-regulation of NEDD4, a signalling component that can cause Beclin-1 cleavage as does LRRK2 [87]. NF-kB
activation and autophagy, therefore, have reciprocal effects on each other; whether the effects of LRRK2 on
these pathways are independent or linked is currently unknown and will be of interest to future research.
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Table 2 Summary of results on the role of LRRK2 in autophagy Part 1 of 2
Model LRRK2 gene Effects on autophagy Refs.
In vitro/cell culture models
SH-SY5Y hLRRK2 cDNA (GS) 1 Autophagic vacuoles [89]
HEK293 BAC hLRRK2 (WT & RC) 1 Autophagic vacuoles [90]
HEK293 Human LRRK2 cDNA (WT 1 Autophagic vacuoles [91]
and GS)
iPSC derived vmDA GS and WT 1 Autophagic vacuoles and | autophagic flux [92]
neurons
Human fibroblasts GS and WT 1 Autophagic vacuoles [93]
Human fibroblasts GS, RC, YC and WT Inhibited LC3-Il response to starvation [94]
HEK293 hLRRK2 cDNA (GS) | LCB-II levels [95]
RAW264.7 Endogenous | Membrane recruitment with autophagy [67]
stimulation
SH-SY5Y Endogenous 1 LC3-Il and p62 with Lrrk2 kinase inhibition [96]
Primary C. elegans LRRK2 cDNA (GS and WT) 1 Autophagic vacuoles and accelerated [97]
DA age-related loss of autophagy
neurons
Human fibroblasts GS and control 1 LC3-Il levels and 1 autophagic flux [98]
Primary mouse BAC mLRRK2 (GS, RC, 1 Lysosome size and | pH [99]
astrocytes YC)
Human fibroblasts GS and control 1 Lysosome size and calcium release [64]
H4 neuroglioma cells Endogenous LRRK2 kinase inhibition 1t LC3-Il in a Beclin1 [100]
dependent manner
HEK293 hLRRK2 cDNA (WT GS, RC, LRRK?2 binds to p62 and | p62 phosphorylation [101]
DA, GR)
Primary rat Endogenous LRRK2 kinase inhibition 1 ULK1 [86]
astrocytes phosphorylation
BMDMs BAC mLRRK2 | Autophagic flux [29]
RAW264.7 hLRRK2 cDNA LRRK2 regulates lysosomal secretion via [72]
Rab8/10 and Rab7L1
Primary cortical GS-knock-in 1 Autophagic flux with 1 lysosomal pH [102]
neurons
Primary cortical BAC hLRRK2 (WT, GS, RC) 1 Autophagic flux with 1 lysosomal pH in RC [103]
neurons neurons
Human fibroblasts GS and control 1 Autophagic vacuoles and mitophagy [104]
In vivo models
Transgenic mouse hLRRK2 cDNA (GS, RC and Enlarged and 1 autophagic vacuoles [105]
WT)
Lrrk2™~ mouse KO 1 p62 in kidneys [106]
Lrrk2™'~ mouse KO Age-dependent biphasic alterations in LC3-II levels [107]
in kidneys
Lrrk2™" rat KO 1 Increased lysosomes in kidneys [108]
Transgenic mouse hLRRK2 cDNA (RC) No changes [109]
AV striatal injected hLRRK2 WT/GS cDNA No changes [110]
rat
KI mouse GS 1 LC3-ll levels [111]
Non-human primate Endogenous | Lysosomal dysregulation in urine after kinase [112]
inhibition
Continued
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Table 2 Summary of results on the role of LRRK2 in autophagy Part 2 of 2
Model LRRK2 gene Effects on autophagy Refs.
KI mouse GS | LAMP1 and LC3-I (in vivo) [102]
Human GS, iPD and control | LAMP1 and p62 in BG [113]
post-mortem

Studies in immune cells are highlighted in bold. 1= increased, |= decreased.
Abbreviations: RC, R1441C; GS, G2019S; WT, wild-type; YC, Y1699C; DA, D1994A ; GR, G2385R; vmDA, ventral-midbrain dopaminergic
neurons; Kl, knock-in; iPD, idiopathic PD; BAC, bacterial-artificial-chromosome.

Autophagy is now one of the most intensively studied pathways in the LRRK2 field, however, many aspects
are still not fully understood, and results often conflicting. Discrepancies in the literature may be a result from
the use of different cell types used in this research (Table 2). The ‘date-hub’ hypothesis describes two types of
‘hubs’ in protein interaction networks; ‘party hubs’, which interact with most of their partners simultaneously
at the same time and space, and ‘date hubs’, which bind their different partners at different times or locations.
The potential for LRRK2 behaving as a ‘date-hub’ has been discussed in the literature [88] and may explain the
discrepancies reported. Under the perspective of the date-hub hypothesis, LRRK2 may be capable of interacting
with different proteins. Therefore, LRRK2 could control different cellular pathways (or modulate the same
pathway differentially) based on the expression of LRRK2 activators and partners and the complexes formed in
a cell-type-specific manner. Furthermore, it is noticeable that, although autophagy is an intensively studied
pathway regarding LRRK2, only a small proportion of those studies has been carried out in immune cells. As
well, despite the crucial role autophagy and the lysosome play in regulating different aspects of the innate and
adaptive immune systems, mechanistic insight into how LRRK2’s role in autophagy and lysosome function
impacts inflammatory pathways in immune cells remains unknown, and is an important area for further
research.

Concluding remarks

Research over the last decade has increased our understanding of the pathophysiological role of LRRK2 in
disease and supports the role of LRRK2 in inflammation and immune cell function. Rab GTPases have been
identified as bona fide LRRK2 substrates, and LRRK2 regulates phagocytosis, cell-signalling and autophagy in
immune cells. What is apparent from the current literature regarding leprosy, bacterial infection and PD, is a
distinct role of LRRK2 in inflammation in a cell-specific manner. Interestingly, Rab GTPases in immune cells
are recruited differentially to phagosomes and other cellular organelles based on cell-type and extracellular
stimuli [114,115]. Given the important role of Rab GTPases in LRRK2 function and in immune cell function,
more research is required in order to unequivocally establish the bona fide interacting partners of LRRK2 in dif-
ferent immune cell types under different conditions. Furthermore, additional research is required in order to
establish the involvement of LRRK2 in inflammatory pathways in different immune cell types. Specifically,
further research is required to unveil the cell-type dependent manner in which LRRK2 kinase activity regulates
these different cellular pathways. LRRK2 kinase inhibitors have been discussed for their potential therapeutic
effects in diseases such as PD where aberrant LRRK2 kinase activity is apparent. However, a loss of LRRK2
kinase activity may lead to an increased risk of infection and inflammation in the periphery, as suggested by
data discussed here. Therefore, such malignant side effects would need to be taken into consideration if such
inhibitors were to be therapeutically beneficial.

Understandably, a large percentage of the research aiming to understand LRRK2 enzymatic function has
focused on its kinase activity. Kinases are appealing drug targets for pharmaceutical companies due to the fact
that these enzymes are considered highly druggable and can be targeted by small-molecule chemistry. However,
this also means that there is still uncertainty about the contribution of GTPase activity to cellular toxicity in
immune cells. Although many model organisms with interesting phenotypes have been developed based upon
familial mutations in the GTPase domain of LRRK2, mechanistic insight into the contribution of GTPase activ-
ity is so far lacking [116]. As well, it is important to consider that the enzymatic core of LRRK2 is surrounded
by protein-protein interaction domains, which have received considerably less research attention over the last
decade. The G2385R mutation, which is located in the WD40 domain of LRRK2, is a risk factor for PD [117],
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emphasizing the need for future research on the role of these protein-protein interaction domains in disease.
Understanding how LRRK2 GTPase activity and its role as a scaffolding protein contributes to such phenotypes
in immune cells will be challenging and may rely in the future upon genetic or pharmacological manipulations.

Perspectives

e LRRK2 has been implicated in multiple processes critical for immune cell function. Unveiling
pathological mechanisms of mutations in immune cells is of great importance for research on
PD, IBD and bacterial infections

e |RRK2 can regulate inflammatory pathways in multiple cell types via different mechanisms.
The current literature highlights the pertinent role of the interaction between LRRK2 and Rab
GTPases in immune cell homeostasis.

e Discrepancies in the literature highlight cell-type dependent effects of LRRK2 on immune cell
function. Future research will benefit from a direct comparison between immune cells and
identifying bona fide substrates of LRRK2 in different cell types and under different immune
conditions.
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