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Polycomb-mediated epigenetic silencing is central to correct growth and development in
higher eukaryotes. The evolutionarily conserved Polycomb repressive complex 2 (PRC2)
transcriptionally silences target genes through a mechanism requiring the histone modifi-
cation H3K27me3. However, we still do not fully understand what defines Polycomb
targets, how their expression state is switched from epigenetically ON to OFF and how
silencing is subsequently maintained through many cell divisions. An excellent system in
which to dissect the sequence of events underlying an epigenetic switch is the
Arabidopsis FLC locus. Exposure to cold temperatures progressively induces a PRC2-
dependent switch in an increasing proportion of cells, through a mechanism that is
driven by the local chromatin environment. Temporally distinct phases of this silencing
mechanism have been identified. First, the locus is transcriptionally silenced in a process
involving cold-induced antisense transcripts; second, nucleation at the first exon/intron
boundary of a Polycomb complex containing cold-induced accessory proteins induces a
metastable epigenetically silenced state; third, a Polycomb complex with a distinct com-
position spreads across the locus in a process requiring DNA replication to deliver long-
term epigenetic silencing. Detailed understanding from this system is likely to provide
mechanistic insights important for epigenetic silencing in eukaryotes generally.

Introduction
The Polycomb silencing mechanism was originally identified using molecular genetic approaches in
Drosophila. Distinct complexes of Polycomb proteins, known as Polycomb repressive complex 2
(PRC2) and Polycomb repressive complex 1 (PRC1), were shown to impart a cis-acting transcriptional
silencing to the local chromatin [1–6]. The conservation in mechanisms of Polycomb silencing across
mammals and plants has spurred an investigation into how epigenetic states are established and their
role in response to environmental stimuli and developmental signals. Polycomb targets appear to exist
in bistable states—they are either epigenetically ON, marked by H3K36me3 or other active histone
modifications, or OFF and marked by H3K27me3. The switch from one state to another occurs via
distinct phases [6–10]. However, the mechanisms underlying epigenetic switching and inheritance of
the different states through cell division are still not well understood.
A Polycomb target that has received considerable attention is Arabidopsis FLC. This encodes a

MADS box transcriptional repressor that delays flowering through repression of a set of genes
involved in the transition from vegetative to reproductive development [11,12]. FLC expression is epi-
genetically silenced by exposure to cold. This process, known as vernalisation, is quantitative and at
the whole plant level, FLC silencing is progressive and gradual. However, at the gene level, it is an
infrequent ON/OFF epigenetic switch, with more cold leading to more silenced loci [9,13–15]. For
plants in the field, this slow overall quantitative silencing response ensures plants wait until the end
of winter to flower, aligning their transition to reproductive development with favourable spring
conditions [11].
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The long timescale over which the FLC silencing occurs has enabled its distinct phases to be elaborated: first,
transcription is down-regulated, and similarly to other Polycomb targets, this involves non-coding transcripts.
Once the transcription is down-regulated, there is a switch to epigenetic silencing mediated by PRC2 and acces-
sory proteins, independently of DNA methylation [16–19]. Spreading of Polycomb silencing across the locus,
in a process requiring DNA replication, then locks in the silenced state, giving stable long-term epigenetic silen-
cing through multiple rounds of cell division [9,20]. The silencing is reversed in a process requiring histone
demethylation [21], ensuring each generation overwinters before flowering. In this review, we summarise and
discuss the current mechanistic understanding of the distinct phases of the Polycomb-mediated switching
mechanism at FLC.

Setting the stage: down-regulation of transcription
FLC transcription is rapidly down-regulated in response to cold exposure, and this occurs independently of the
Polycomb accessory proteins [22]. This is consistent with the original view that PRC2 functions to maintain
rather than initiate transcriptional repression [23–25]. What drives the cold-induced transcriptional down-
regulation at FLC is still being elucidated, but it is linked to the up-regulation of expression of COOLAIR, a set
of long, antisense, non-coding RNAs (lncRNA) transcribed from the opposite strand of FLC starting in the
proximity of the poly(A) site of the FLC sense transcript (Figure 1a) [22]. This early involvement of non-
coding transcription shows some parallels with the up-regulation of Xist, the ncRNA central to X inactivation
in mammalian cells [26]. For example, single molecule RNA FISH analysis in root cells shows that COOLAIR
antisense transcription is mutually exclusive to the sense FLC transcription—only one or other FISH signal is
seen at each locus [27]. COOLAIR transcription occurs independently at each diploid copy suggesting that cold
induction is via changes of the local chromatin, i.e. the trans-factors operate in a context-dependent manner.
The antisense signal strongly increases with one to two weeks of cold exposure and COOLAIR forms large
‘clouds’ over the FLC locus, rather like Xist over the inactive X chromosome [27]. The mutually exclusive tran-
scription is interesting given that FLC and COOLAIR expressions are positively correlated in RNA from popula-
tions of cells. The local chromatin environment appears to affect both FLC and COOLAIR transcription, with
an additional mechanism temporally allowing transcription of only one strand at a time. We now have new
mutants identified with high COOLAIR expression in the warm and these show very low FLC sense expression.
These should help elucidate how transcription occurs on only one strand at a time and how cold induction of
COOLAIR results in FLC down-regulation (Zhao and Dean, unpublished).
Two other published non-coding RNAs at FLC are COLDAIR, a sense transcript originating from within

FLC intron 1, and COLDWRAP, another sense transcript originating instead from the promoter region of FLC
[28,29]. These are reported to be induced by cold and to immunoprecipitate with the core PRC2 machinery
[28,29]. There are now many examples of non-coding RNAs associating with PRC2 [30]. Current thinking is
that PRC2 binds to RNA in a non-sequence specific manner and influences the methyltransferase activity of
PRC2 and/or prevents the interaction of the complex with chromatin [31–36].

Connecting the two: linking transcriptional down-regulation
to Polycomb silencing
Once FLC transcription is down-regulated, the nucleation of Polycomb silencing can occur [37]. Transcription
needs to be down-regulated as it opposes H3K27me3 silencing through the delivery of H3K27me3 demethy-
lases and general nucleosome disruption [10]. The FLC nucleation region covers ∼3 nucleosomes over FLC
exon 1 and the beginning of intron 1 and, with increasing cold, there is a progressive reduction in H3K36me3
over these nucleosomes, and a concomitant increase in H3K27me3 [25,38]. COOLAIR expression is required
for this co-ordinated switch of histone modifications [25,39].
The nucleation region was also defined by mutational analysis, which showed that one intronic single nucleo-

tide change at the 30-end of the nucleation region, within intron 1, could attenuate FLC silencing [40,41]. VAL1
was identified as the protein factor binding to this genomic region, with in vitro and in vivo association with a
tandem RY cis motif reduced by the mutation; VAL1 acts redundantly with VAL2 [40,41]. VAL1 and VAL2 are
B3 DNA-binding proteins with PHD, B3, CW-ZF and EAR domains, and broad functions across the
Arabidopsis genome in transcriptional repression [42]. VAL1 interacts with the histone deacetylase HDA19,
with components of the apoptosis and spliceosome (ASAP) complex involved in co-transcriptional regulation
[43,44], and with the PRC1 [40]. The ASAP components physically link to the PRC2 accessory proteins VIN3
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and VRN5 [40], providing a mechanism through which PRC2-induced silencing could be targeted to specific
sequences (Figure 1b). How all these factors link the transcription state to the ability to nucleate Polycomb
activity is under investigation. The demonstration that Polycomb nucleation is a cis-mediated event, driven by
local chromatin and thus involving co-transcriptional regulators [9,14], argues that the VAL1 sequence-specific
DNA-binding protein is required for, but does not drive the epigenetic silencing.

Slow and steady: Polycomb nucleation
Forward genetic screens for mutants defective in vernalisation identified a key role for VIN3 and VRN5 in trig-
gering the epigenetic silencing of FLC. VIN3 and VRN5 are two homologues in a four-member gene family in
Arabidopsis, which all share PHD and FNIII domains and a VEL protein interaction domain at their C-termini
[18,45]. VIN3 and VRN5 co-immunoprecipitate with both ASAP components and core PRC2 subunits SWN
(the EZH1/2 histone methyltransferase homologue), FIE (the EED homologue), MSI (the RBAP46/48 homo-
logue) and VRN2 (the SUZ12 homologue) (Table 1) [19,46]. Once FLC is transcriptionally down-regulated the
VIN3–VRN5–PRC2 complex deposits H3K27me3 at the nucleation site in FLC. At the whole plant level, the
H3K27me3 deposition looks gradual, but at each locus, there is a switch from H3K36me3 to H3K27me3. This
appears to be a cell-autonomous, stochastic and infrequent epigenetic switch, so the longer the exposure to
cold, the higher number of cells contain nucleated FLC [9,13–15]. Each FLC parental allele nucleates

Figure 1. Model for the epigenetic switching mechanism at FLC.

(a) Prior to cold exposure, the FLC locus is expressed and enriched in H3K4me2, H3K4me3, H3K36me3 and histone

acetylation. During the first weeks of cold exposure, COOLAIR transcripts are transiently expressed at a high level causing the

down-regulation of FLC transcription. The binding of VAL1 (and possibly its homologue VAL2) at the nucleation region and their

interactions with the histone deacetylase HDA19, the ASAP complex, involved in transcriptional regulation, and the PRC1, link

the down-regulation of transcription to Polycomb silencing. VIN3 is induced by cold. (b) The ASAP complex associates with

the PRC2 accessory proteins VIN3 and VRN5 and with the PRC2-SWN complex at the nucleation region establishing the

metastably silenced state at FLC. This state is characterised by FLC not being transcribed and accumulation of H3K27me3 at

the nucleation region. (c) Upon return to warm temperatures, H3K27me3 spreads across the locus, a process requiring the

formation and spreading of the PRC2–CLF complex, LHP1 and the incorporation of the histone variant H3.1. This last phase

establishes a long-term epigenetically silenced state that is maintained across multiple cell divisions until the state is reset

during reproductive development.
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independently, showing the nucleation event is driven by mechanisms acting through the local chromatin
environment, rather than limited by trans-factors (Figure 2) [9,14].
An interesting aspect of nucleation is its intragenic location. Many features point to the FLC nucleation

region being equivalent to a Polycomb Response Element (PRE) [47], well characterised in Drosophila. PREs
bind the Polycomb factors either through sequence specificity or a structural feature, e.g. non-methylated CpG
islands act as PREs in mammalian genomes [48]. VIN3 associates specifically at the nucleation region during
cold [9] and together with VRN5 shares many functional domains (zinc finger—PHD and winged-helix
domains, Nielson, Fiedler and Dean, unpublished) with PRC2 accessory proteins characterised from mammals:
PHF1, PHF19 and MTF2. These PRC2 accessory proteins appear to regulate the recruitment and activity of the
core PRC2 complex, composed of EED, EZH1/2, SUZ12, RBAP46/48 [49]. The PHF1 winged-helix domain
binds non-sequence specifically to DNA and prolongs the residence time of the PHF1–PRC2 on chromatin,
making it a more efficient H3K27 methyltransferase than PRC2 alone [50,51]. Modulation of PRC2 activity
appears a common theme: the mammalian PRC2 accessory proteins AEBP2 and JARID2 are substrates for
PRC2 methylation, and this feeds back to stimulate the methyltransferase activity of the core PRC2 complex
[52–56]; SUZ12 enhances PRC2 association with DNA through the N-terminal part of its VEFS domain [57].
However, when in complex with the other core subunits, SUZ12 mediates the inhibition that the active histone
marks H3K4me3 and H3K36me3 exert on the PRC2 methyltransferase activity [52,58]. Interestingly, plants can
relieve the inhibitory effect of the active histone marks by exchanging the SUZ12 homologue EMF2 with the
SUZ12 homologue VRN2, as VRN2 does not inhibit the methyltransferase activity of the complex in their pres-
ence [58]. Thus, the modulation of the activity of PRC2 complex via accessory proteins or by swapping
between SUZ12 homologues might provide switch-like properties to the system facilitating the initial establish-
ment of PRC2-dependent repression when H3K27me3 is absent or its density is low.
During the cold, there is the inheritance of deposited H3K27me3 through cell division, but little or no

spreading of the K27me3 marks along the locus. Yet spreading readily occurs once plants are returned to the
warm [9,20]. During replication, the redistribution of the histones carrying the H3K27me3 modification onto
the newly synthesised strands has been proposed to help to copy the mark from the modified nucleosomes to
the unmodified neighbouring nucleosomes giving rise to self-maintenance of methylation patterns [6,7,13,59–
61]. This hypothesis is supported by the observation that the core PRC2 subunit EED can bind H3K27 and
that this binding also allosterically stimulates the methyltransferase activity of the complex [8,62–64]. Why
then does the nucleation region remain restricted to three nucleosomes in the cold and does not spread? The
structural analysis of the PRC2 complex (reviewed in [65,66]) has given some clues. The catalytic centre of the
core PRC2 complex resides in the SET-domain histone methyltransferase (EZH2) [3,67], but the stability and
catalytic activity of the complex depend on the contacts that the zinc-finger protein SUZ12 establishes with the
WD-40 protein EED and EZH2 [53,63,68,69]. The fourth subunit, the WD-40 protein RBAP48, folds together
with the N-terminal part of SUZ12 to form the module that binds to the nucleosome [53,56,63]. The mamma-
lian PRC2 accessory proteins affect this structural arrangement [52,56], and since, as mentioned above, the
plant accessory proteins VIN3 and VRN5 share many functional domains with PRC2 accessory proteins char-
acterised from mammals, a possibility is that they may do the same and during cold hold PRC2 in a conform-
ation with minimal catalytic activity to prevent the spreading. Upon return to warm temperatures, the

Table 1 Equivalent PRC2 core subunits proteins in different systems

Mammals Flies Plants Characteristic domain

EZH1/2 E(z) SWN
CLF
MEA

SET

SUZ12 Su(z)12 VRN2
FIS2
EMF2

Zinc finger
VEFS box

EED ESC
ESC-like

FIE WD-40

RBAP48 (synonym RBBP4)
RBAP46 (synonym RBAP7)

p55 (synonym Nurf55) MSI1 WD-40
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conformation and/or the composition of the complex could change increasing PRC2 allosteric activation and
promoting spreading of the H3K27me3. Experimental observations are consistent with this notion: VIN3 is
rapidly lost from the locus; VRN5 slowly decreases at the nucleation region over 10 days, but also it redistri-
butes along the locus [9]. Thus, both proteins could be important for docking and keeping the PRC2 at the
nucleation region, with VIN3 potentially keeping the methyltransferase activity of PRC2 ‘in check’.

Take me for a ride: H3K27me3 spreading
After cold, upon return to warm temperatures, H3K27me3 spreads from the nucleation region to cover the
FLC locus and this spreading is required for the long-term stability of the epigenetic silencing (Figure 1c)
[9,20]. This memory state is propagated in cis, i.e. by local chromatin, as demonstrated by the independent
behaviour of two FLC gene fusions in the same nucleus, which can be inherited in different transcriptional
states (Figure 2) [14].
Analysis of different mutants revealed that the nucleation and spreading phases could be genetically

uncoupled [9,20]. lhp1, clf and h3.1kd mutants could nucleate H3K27me3 but not enable H3K27me3 spreading
across the locus. LHP1 is the homologue of HP1 and associates with PRC2 [70]; CLF functions in a partially
redundant manner with SWN, they are the homologues of EZH1 and EZH2 [71], and H3.1 is an histone
variant deposited during DNA replication that facilitates the restoration of H3K27me3 [20]. The spreading
process is also blocked by the CDK inhibitors that halt cell cycle progression [9,20] and by mutations in the
DNA replication primase Pol α [72]. Proteomic studies in Arabidopsis show that several PRC2 components,
including CLF, immunoprecipitate with DNA Pol ε, the DNA polymerase responsible for replicating the
leading strand [73]. CLF, SWN and LHP1 also interact with the helicase complex at the replication forks via a
protein related to the yeast replication factor Ctf4 [74]. Thus, a possibility is that the PRC2 complex associates
with the replication machinery and by progressing along with the replication fork, it is able to efficiently
methylate newly deposited histones just behind the replication fork.
A real puzzle is the functional distinction between the two closely homologous H3K27 methyltransferases,

CLF and SWN at the FLC locus, where SWN predominantly mediates nucleation, whilst CLF is required for
spreading [9]. Interestingly, the two mammalian paralogues EZH1 and EZH2 also have complementary roles
[75,76]. EZH2 is associated with proliferative tissue, whilst EZH1 is not [77]. However, PRC2-EZH1 differs
from PRC2-EZH2 in that it has low methyltransferase activity [55,77,78]. A possibility therefore is that SWN
function is similar to EZH1 with a minimal catalytic activity, which would be sufficient to establish the nucle-
ation region and to restrict it to three nucleosomes during cold. CLF, may be more like EZH2, able to be allos-
terically activated and thus promote efficient spreading concomitant with DNA replication upon return to

Figure 2. Cell-autonomous and cis-based silencing of FLC expression.

FLC can exist in ON or OFF epigenetic states. At ambient temperatures, FLC is transcribed and epigenetically ON in every cell.

Upon exposure to cold, FLC transcription is shut down rapidly and epigenetic switching to an OFF state occurs

cell-autonomously, i.e. independently in each cell and in cis, i.e. separately at each FLC copy (two alleles in each cell of a

diploid plant). Because the switching events are infrequent, it takes many weeks of cold exposure before all FLC copies are

epigenetically OFF (so unable to reactivate FLC transcription upon return to the warm). The molecular events occurring at each

FLC copy during exposure to cold are described in Figure 1a and b.
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warm temperatures. Like CLF, LHP1 is required for H3K27me3 spreading along the FLC locus [9] and for
maintaining the FLC silenced state [79,80]. LHP1 associates with CLF and together they co-ordinate spreading
of H3K27me3 at many genomic regions [81]. LHP1 function requires an RNA-binding domain and LHP1
forms distinct and RNA-dependent heterochromatic-like foci in Arabidopsis nuclei [82]. However, whilst FLC
loci cluster within the nucleus as Polycomb nucleation occurs, this process is not dependent on LHP1 [83].
LHP1 function is thus downstream of H3K27me3 deposition, maintaining the spread H3K27me3 state, ensur-
ing long-term epigenetic silencing through many mitotic cycles.
FLC expression needs to be epigenetically reset every embryogenesis [84,85] because in plants, the germline

is not laid down separately like in animals, but it arises from somatic tissue during reproductive development.
A mutant defective in resetting, elf6, was found to disrupt an H3K27 demethylase activity, and this led to trans-
generational inheritance of the silenced H3K27me3 state [21]. Resetting mechanisms during seed development
thus play crucial roles in ensuring plants can align their development with the seasons.

Conclusions
The analysis of what is a specific plant process—the developmental transition to reproduction in response to
temperature changes—has produced a detailed mechanistic understanding of Polycomb-mediated epigenetic
switching. The long timescales involved in the epigenetic silencing of FLC provide an excellent system to
dissect the distinct Polycomb complexes that operate in sequence to give transcriptional repression, metastable
cis-based nucleation and then long-term epigenetic silencing. Similar stochastic epigenetic switching systems
underlie other developmental switches: in mating type switching in fission yeast [86], X chromosome inactiva-
tion in mammals [26] and the switch to haematopoietic T-cell development in mammals [87]. In all of these,
the local chromatin environment is central to the switching and memory mechanisms [14,87,88]. These local
chromatin-driven (cis-based) epigenetic mechanisms are the outcome of integrated and interdependent func-
tions of trans-factors, non-coding transcription and histone modifications. Thus, dissection of the silencing
mechanism at FLC with respect to non-coding transcription, allosteric interactions between trans-factors and
histone modification dynamics will undoubtedly provide information important for understanding quantitative
gene regulation and epigenetic switching generally.

Perspectives
• Importance of the field: Polycomb-mediated epigenetic silencing is central to correct growth

and development in higher eukaryotes. However, we still do not fully understand what defines
Polycomb targets, how their expression state is switched from epigenetically ON to OFF and
how silencing is subsequently maintained through many cell divisions.

• Current thinking: the long timescales involved in the epigenetic silencing of Arabidopsis FLC
have provided an excellent system to dissect the distinct Polycomb complexes that function
over different timescales in transcriptional repression, metastable cis-based nucleation and
long-term epigenetic silencing.

• Future directions: future work will focus on the interaction of non-coding transcription, allo-
steric interactions between trans-factors and histone modification dynamics in the mechan-
isms underpinning quantitative gene regulation and epigenetic switching.
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