
Review Article

Towards a therapy for mitochondrial disease: an
update
Caterina Garone and Carlo Viscomi
MRC-Mitochondrial Biology Unit, Cambridge CB2 0XY, U.K.

Correspondence: Caterina Garone (cg562@mrc-mbu.cam.ac.uk) or Carlo Viscomi (cfv23@mrc-mbu.cam.ac.uk)

Preclinical work aimed at developing new therapies for mitochondrial diseases has
recently given new hopes and opened unexpected perspectives for the patients affected
by these pathologies. In contrast, only minor progresses have been achieved so far in the
translation into the clinics. Many challenges are still ahead, including the need for a
better characterization of the pharmacological effects of the different approaches and the
design of appropriate clinical trials with robust outcome measures for this extremely het-
erogeneous, rare, and complex group of disorders. In this review, we will discuss the
most important achievements and the major challenges in this very dynamic research
field.

Introduction
The extreme genetic, biochemical, and clinical complexity of primary mitochondrial diseases chal-
lenges both clinical and research activity in the field. Mutations in any of the mitochondrial genes
encoding the 13 core subunits of the respiratory chain complexes and the 22 mitochondrial tRNAs
and two rRNAs, as well as in any of the nuclear genes encoding the rest of the ∼1500 proteins consti-
tuting the mitochondrial proteome, may potentially lead to a mitochondrial dysfunction and disease.
These orders can be transmitted with any kind of inheritance (recessive, dominant, X-linked, and
mitochondrial) and can be characterized by multisystemic or organ-specific dysfunction that can arise
at any time in life. This tremendous heterogeneity, together with a limited information on the natural
history of the disease and a general lack of appropriate models, prevented, so far, the development of
effective therapies.
In mtDNA-related disorders, the heterogeneity is partially explained by the degree of heteroplasmy,

i.e. the relative load of mutant vs. wild-type mtDNA. For instance, the same mutation m.8993T>G in
the ATPase 6 gene leads either to a childhood-onset of neuropathy and retinitis pigmentosa when the
mutation load is ∼70% or to a fatal early-onset maternally inherited Leigh disease (MILS) when the
mutation load exceeds 90% [1]. A high degree of clinical and biochemical heterogeneity is also
observed in the presence of homoplasmic mutations, such in LHON (Leber’s hereditary optic neur-
opathy) disease. LHON is one of the most frequent mitochondrial diseases and is due to homoplasmic
mutations in mtDNA leading to blindness. The non-synonymous mutations at positions 11 778 in
ND4, 3460 in ND1, and 14 484 in ND6 account for 90% of the patients [2]. The disease is character-
ized by incomplete penetrance, male prevalence, and spontaneous partial recovery of visual acuity. In
addition, environmental factors and polymorphisms in mtDNA haplogroups J1c and J2c are also asso-
ciated with increased penetrance of the disease [3]. Similarly, mitochondrial disorders due to defects
in nuclear-encoded proteins can present as a disease spectrum in the presence of the same pathogen-
etic gene variant. In a recent study, the natural history of a large cohort of patients with confirmed
diagnosis of TK2 deficiency was analysed. Three phenotypes with divergent survival were recognized
(infantile, childhood, and late onset myopathy) based on the age at onset, rate of weakness, and post-
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onset survival and independently by the genotype. Indeed, the most common defect, p.Thr108Met, was respon-
sible of the three different phenotypes in different families [4]. These unique features make extremely difficult
the identification of outcome measures and clinical end-points in clinical trials.
At present, the therapies for mitochondrial disorders are limited to the treatment of the complications and

supportive care with cocktails of vitamins (e.g. thiamine, riboflavin, folinic acid, and others), CoQ, aminoacids
(arginine), lipoic acid, and other components. However, the efficacy of these supplements lacks solid preclinical
or clinical evidence [5,6].
Since the first edition of this review, many new publications introduced new concepts, opening new possibil-

ities for treatment. In parallel, the number of clinical trials is steadily increasing. These developments are the
subject of this review and are summarized in Figure 1.

mTORC1: a new target for mitochondrial disorders
Rationale
mTORC1 is a cytosolic Ser/Thr kinase belonging to the phosphatidylinositol kinase-related protein kinases
family with central roles in several cellular processes, including protein translation, immune response, nucleo-
tide and lipid synthesis, glucose metabolism, autophagy, and lysosomal biogenesis (Figure 2) [7]. The idea of
using rapamycin, a widely used mTORC1 inhibitor, to treat mitochondrial diseases stemmed from the observa-
tion that inhibiting cytosolic translation significantly prolonged (approximately from 15 to 27 days) the replica-
tive lifespan (i.e. the number of daughter cells a yeast cell can generate before exiting the cell cycle) of
mitochondrial mutants in Saccharomyces cerevisiae [8].

Results
Rapamycin (8 mg/kg i.p. starting 10 days after birth) markedly ameliorated the clinical phenotype and pro-
longed the median lifespan (from 50 to 110 days) of a knockout mouse for Ndufs4 (Ndufs4 KO), encoding the
18 kDa subunit of respiratory complex I, characterized by rapidly progressive encephalopathy resembling LS
[9]. Rapamycin induced an extensive metabolic remodelling, including a shift from glycolysis to amino acid
catabolism, the meaning of which remains, however, unclear.
Several subsequent studies aimed at better characterizing the mechanism of action. In one of these, post-

onset Ndufs4 KO mice were orally administered with rapamycin, with the dose kept the same as previously
used in i.p., i.e. 8 mg/kg. This treatment delayed the development of the encephalopathy, in spite of blood
steady-state levels post-treatment lower than those detected after systemic injection (32 vs. 45 ng/ml) [10].
In another study, rapamycin robustly increased by ∼34% the lifespan and rescued a fat storage defect in a

ND2-deficient Drosophila model of LS, without affecting behavioural phenotypes and in an
autophagy-independent manner [11]. However, the effect of rapamycin treatment on complex I activity was
not investigated.
Rapamycin-treated iPSCs-derived neurons from a patient with MILS, carrying a mutation in the MT-ATP6

gene associated with reduced ATP synthesis, showed increased resistance to glutamate toxicity, possibly via
inhibition of translation, thus preserving cellular ATP levels [12]. Similarly, inhibition of translation by
mTORC1 inhibitors rapamycin and probucol, and by cycloheximide partially rescued the clinical and/or bio-
chemical phenotypes of different models of mitochondrial dysfunction [13]. These included: (i) the
CoQ-deficient mouse B6.Pdss2kd/kd, characterized by complexes I–III and II–III deficiencies, (ii) the gas-1(fc21)
nematodes, carrying a homozygous mutation in the complex I NDUFS2 subunit homologue, and (iii) rotenone-
treated human cell lines mimicking complex I deficiency. Reduced ATP consumption and proteotoxic stress
and activation of autophagy were shown to contribute to the overall effect [13].
In the Deletor mouse, carrying a dominant mutation in the mitochondrial helicase Twinkle, rapamycin

down-regulated several components of the mtISR, a complex tissue-specific pathway involving transcriptional
and metabolic adaptations, including the induction of the mitokines FGF21 and GDF15, one-carbon metabol-
ism and mitochondrial unfolded protein response [14,15].
Low-dose rapamycin (0.8 mg/kg) administered to the mothers in drinking water before birth and increased

to 4 mg/kg after birth, significantly prolonged by 60% the lifespan of Tk2 knockin mouse model (Tk2H126N),
defective for the pyrimidine-specific mitochondrial thymidine kinase [16]. This effect was due neither to the
correction of mtDNA depletion nor to metabolic effects in the brain. In contrast, rapamycin induced
significant changes in the liver in amino acid, carbohydrate, fatty acid, cofactor, and nucleic acid
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Figure 1. Development of new therapies for mitochondrial disorders.

Preclinical (in vivo and in vitro), clinical and drug approval stages are represented in the figure. Note the lack of preclinical data

in mitochondrial disease models for some new or re-purpose therapies. Treatments are also divided into ‘general action’ or

‘disease target’. When clinical trials have been initiated, the clinicaltrial.gov code number is provided with the potential

therapeutic indication. MM, mitochondrial myopathy; MD, mitochondrial disorder; LHON, Leber hereditary optic neuropathy;

Tk2, thymidine kinase 2 deficiency; MELAS, mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes; PS,

Pearson syndrome; Red arrow, gene therapy; Green arrow, drug approval process; Blue arrow, drug compound; *= GMP

product development.
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metabolism, without affecting key pathways of mitochondrial function, such as glucose, lactate, pyruvate, and
β-hydroxybutyrate [16].
Notably, rapamycin was beneficial in all the models of mitochondrial disease tested, independently of the

genetic lesion. Although the mechanism ultimately mediating rapamycin-dependent phenotypic amelioration
of OxPhos-defective models is still highly debated, we can speculate that activation and/or inhibition of several
pathways can contribute to the overall effect, including the inhibition of translation, which results in reduced
energetic demand, and stress responses as well as the activation of autophagy.

Outlook
Rapamycin is an approved drug used as immunosuppressant, and repurposing would be relatively straightfor-
ward, although appropriate investigations on mitochondrial patients would be required. In addition, several
rapamycin analogues (rapalogues) with different mechanisms of action on mTORC1 are being developed [17],
but have not been tested on mitochondrial disease models. Given the broad effects of mTOR inhibition, includ-
ing immunosuppressive action, side effects are a major concern for the use of these compounds. It should be
noted, however, that inhibition of mTOR with a rapalogue improved immune response to influenza vaccine,
suggesting that compounds with a better safety profile may become available.

Ketogenic diet: selecting against high mutational load
Rationale
Ketogenic treatment (i.e. low glucose, high ketone bodies) was shown to shift heteroplasmy in cybrid cell lines
carrying deleted mtDNA. Although the mechanism of this shift is unclear, a selective stimulation wild-type vs.
mutant mtDNA replication has been proposed [18].

Results
The hypothesis that ketogenic diet (KD) could induce a shift in heteroplasmy levels was tested in vivo in the
Deletor mouse [19]. KD treatment decreased the amount of cytochrome c oxidase-negative muscle fibres, pre-
vented the formation of the mitochondrial ultrastructural abnormalities in the muscle and reversed some of the
metabolic changes observed in the mutant mice, possibly by stimulation of mitochondrial biogenesis. More
recently, the results of KD treatment with a modified Atkins diet, a type of KD, in patients with mitochondrial
myopathy and progressive external ophthalmoplegia with single or multiple deletions were reported [20]. All
five patients showed signs of rhabdomyolysis within 2 weeks from the start of the treatment, confirmed by the
damage to muscle fibres observed using electron microscopy. These results determined the interruption of the
trial. Surprisingly, a 2-year follow-up revealed a relevant increase in muscle strength, suggesting a
damage-induced stimulation of muscle repair by satellite cells, which do not carry deleted mtDNA molecules,
following acute damage by Atkins diet.
In another study, reduced glucose intake to levels similar to that of KD into neuronal-like cybrids of MELAS

was shown to reduce the accumulation of cI-subassemblies and to increase respiration along with mitochon-
drial content [21], although it is unknown how low glucose medium can induce mitochondrial biogenesis.

Figure 2. Scheme of the mTORC1-dependent metabolic pathways.

© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).1250

Biochemical Society Transactions (2018) 46 1247–1261
https://doi.org/10.1042/BST20180134

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/46/5/1247/479592/bst-2018-0134c.pdf by guest on 10 April 2024

https://creativecommons.org/licenses/by/4.0/


Outlook
The study by Ahola et al. gave unexpected results, which suggest that KD-induced damage may trigger the acti-
vation of satellite cells, which are mtDNA deletion free, and can thus repair the skeletal muscle. More work is
needed to investigate whether a modified regimen, based for instance on cycles of ketogenic and normal diet,
may have a more robust effect [22].

Hypoxia: the unexpected therapeutic option
Rationale
In 2016, Jain et al. [23] identified the von Hippel–Lindau (VHL) factor, a major player in hypoxic response, as
the most effective suppressor of antimycin-induced mitochondrial dysfunction in a Cas9-mediated screening.
VHL is as an ubiquitin ligase that recognizes and targets for degradation the hydroxylated forms of the
hypoxia-induced transcription factors (HIFs) [24]. During hypoxia, HIFs are stabilized because the hydroxyl-
ation reaction operated by the prolyl-hydroxylases stops (Figure 3).

Results
Chronic normobaric hypoxic conditions (11% O2), started at 30 days, prevented the development of the disease
in Ndufs4 KO mice, drastically ameliorating the growth curve, the body temperature and the performance in
neurological tests, which were deeply impaired in Ndufs4 KO littermates exposed to normoxic conditions.
Median lifespan was remarkably increased from 58 to 270 days. The neuropathological lesions of Ndufs4 KO
mice in olfactory bulbs, cerebellum, and brainstem were prevented by hypoxic conditions. In contrast, hyper-
oxia (55% O2) had the opposite effect and worsened all the parameters analysed [23]. Importantly, more mod-
erate hypoxic conditions (17% O2) or alternate hypoxia/normoxia failed to improve the phenotype in Ndufs4
KO mice [23]. In addition, return to normoxia rapidly reversed the beneficial effects, while hypoxic conditions
established after the onset of the encephalopathic symptoms were able to reverse the brain lesions [25].

Outlook
The fascinating results on the Ndufs4 KO mouse await confirmation in additional models of mitochondrial
disease. In addition, the mechanistic details are still unclear since hypoxia is likely to act at different levels,

Figure 3. Regulation of the hypoxic response by stabilization of HIF1α.

In normoxic conditions, HIF1α is hydroxylated by PH, ubiquitinated by the VHL, and thus targeted to the proteasome for

degradation. During hypoxia, PH-dependent hydroxylation is blocked and HIF1α stabilized, thus activating the hypoxic

transcriptional response. PH, prolyl hydroxylase; VHL, von Hippel–Lindau factor; Ub, ubiquitin.
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including: (i) metabolism, through the HIF-dependent transcriptional programme, which activates glycolysis
diverting electrons from the defective respiratory chain decreasing ROS production; (ii) oxygen supply to the
cells, blunting ROS production and signalling; (iii) organ physiology (e.g. O2 delivery and CO2 clearance, endo-
crine functions, immune response) [26]. Clarifying which pathways mediate the effect will open the possibility
of pharmacologically activating them.

Reducing ROS: between hopes and risks
Rationale
Antioxidants are routinely used in the therapy of mitochondrial diseases under the assumption that increased
ROS-related damage is a component of the pathogenesis. However, little evidence from preclinical studies is
available on their efficacy. Only recently, some experimental work started to address this issue using cellular
and in vivo models of mitochondrial dysfunction.

Results
KH176, a derivative of Trolox acting both as antioxidant and redox modulator acting on the thioredoxin/perox-
iredoxin system [27], was shown to improve rotarod performance and gait abnormalities with retention of the
brain structure in the Ndufs4 KO mouse [28]. KH176 is currently under clinical trial (Figure 1), and the
first results covering safety, tolerability, and pharmacokinetics were recently published. These show that
this drug was well tolerated up to single doses of 800 mg and multiple doses of 400 mg b.i.d. and had a phar-
macokinetic profile supportive for a twice daily dosing. Only at high doses, KH176 causes clinically relevant
cardiotoxicity [29].
NAC (N-acetyl cysteine) and vitamin E fully rescued, while CoQ, lipoic acid, orotic acid, and vitamin C par-

tially prolonged the lifespan of gas-1(fc21) worms [30], possibly via reducing global oxidative stress since no
correction of mitochondrial function was observed [30]. An additional study showed that in zebrafish the anti-
oxidant probucol rescued embryo developmental delay induced by complex I inhibition with rotenone and
complex V inhibition by oligomycin but not complex IV by azide [31]. The reasons for this difference are
unclear.
NAC and ascorbate decreased ROS production in fibroblasts from a patient with complex IV-deficiency,

mtDNA instability, and Fanconi anaemia due to mutations in COX4l1, encoding the common isoform of COX
subunit 4 (COX 4-1) [32].
In spite of these not always coherent data, antioxidants remain central in clinical practice, and several

antioxidants-based clinical trials, such as RTA408, idebenone, thioctic (lipoic) acid, EPI-743, KH176, are
ongoing on different mitochondrial diseases (Figure 1). However, with the exception of KH176, none of these
studies was supported by rigorous preclinical studies, and for only those based on idebenone the results have
yet been released [33]. Notably, idebenone has been approved by EMA and an international consensus state-
ment established the indication for the treatment in patients with acute, subacute or dynamic clinical course
while did not recommended the treatment for chronic patients [34].

Outlook
Antioxidants are probably the most widely used drugs in the therapy of mitochondrial diseases. However, there
is accumulating evidence that antioxidants may also be detrimental in some conditions because they may inter-
fere with ROS signalling. For instance, expression of alternative oxidase, an enzyme transferring electrons from
CoQ directly to molecular oxygen in plants and lower eukaryotes, as well as the administration of NAC, signifi-
cantly reduced lifespan of a muscle-specific Cox15 mouse model of severe mitochondrial myopathy by disrupt-
ing ROS-dependent mitochondrial biogenesis and satellite cell recruitment [35]. Future investigations are
warranted to titrate the beneficial and toxic effect of antioxidants in different conditions and to better under-
stand ROS signalling.

Bypassing mtDNA replication enzymatic defects
Rationale
Syndromes characterized by mtDNA instability are usually due to defects in enzymes directly involved either in
mtDNA synthesis or in deoxynucleotide triphosphate (dNTP) metabolism. An imbalance of the nucleotide
pools may trigger mtDNA instability. The supplementation of the missing or insufficient dNTP may thus be
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beneficial bypassing the block and restoring the dNTP pools (Figure 4). dNTPs are the building blocks for
mtDNA synthesis and repair. They are supplied either by de novo synthesis and import from the cytosolic pool
or by the mitochondrial deoxyribonucleoside salvage pathway (reviewed in [36]).
Defects in the enzymes responsible for dNTP pool maintenance perturbed mitochondrial DNA replication

causing reduced copy number of mtDNA, multiple deletions, or point mutations of mtDNA and consequently
affecting OXPHOS activities. Clinically, they present as a spectrum of disorders that ranges from severe infant-
ile hepatocerebral, encephalopathy, or myopathy disorders to childhood-onset myopathy or adult-onset PEO.

Results
Supplementation of deoxyribonucleotides and deoxyribonucleosides has been exploited in in vitro and in vivo
models of mitochondrial dNTP pool unbalance. Molecular bypass therapy with deoxypyrimidine monopho-
sphates (dCMP and dTMP) or substrate enhancement therapy with deoxypyrimidine nucleosides (dC and dT)
orally administered to the Tk2H126N mice led to increased mtDNA levels and mitochondrial respiratory chain
enzyme activities and prolongation of the lifespan of the homozygous mutant mice in a dose-dependent
manner [37,38]. Deoxyguanosine alone corrected mtDNA depletion in DGUOK-deficient human fibroblasts,
lacking the guanosine kinase phosphorylating purines in the salvage pathway [39]. Administration of pyrimi-
dine and purine nucleosides has shown the ability to correct ethidium bromide-induced mtDNA depletion in
human fibroblasts deficient for RRM2B, while their monophosphate form failed to correct depletion in
RRM2B-deficient human myoblast [40,41]. Depletion of mtDNA has been corrected in vivo in a Tymp/Upp1
double knockout mouse model of MNGIE disease by administrating deoxycytidine or tetrahydrouridine. In the

Figure 4. Representation of the main dNTP metabolic pathways.

Catabolic enzymes are marked in orange boxes. ADA, adenosine deaminase; CDA, cytidine deaminase; dAdo,

deoxyadenosine; dCK, deoxycytidine kinase; dCtd, deoxycytidine; dCTD, deoxycytidylate deaminase; dGK, deoxyguanosine

kinase; dGuo, deoxyguanosine; dIno, deoxyinosine; dThd, thymidine; dUrd, deoxyuridine; ENT1, equilibrative nucleoside

transporter 1; PNP, purine nucleoside phosphorylase; RNR, ribonucleotide reductase; THU, tetrahydrouridine; TK1, thymidine

kinase 1; TK2, thymidine kinase 2; TP, thymidine phosphorylase; TS, thymidylate synthase. The dNTP precursors used in

experimental setups to correct mtDNA instability are marked in yellow. The mitochondrial dNTP pools are marked in green. The

enzymes are marked in orange.
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same study, the addition of deoxycytidine and tetrahydrouridine to a cell model of MNGIE disease was also
able to prevent mtDNA depletion [39].

Outlook
Treatments with nucleotide and nucleoside monophosphates have been already translated for human compas-
sionate use under FDA emergency IND and local ethic committee approval in 16 patients with TK2 deficiency.
The preliminary data are expected soon.

Increasing mitochondrial biogenesis
Rationale
Since bioenergetic defects and reduced ATP synthesis play major roles in the pathogenesis of mitochondrial
disease, increasing mitochondrial mass and/or activity can, in principle, be beneficial. The stimulation of
mitochondrial biogenesis is regarded as one of the most promising approaches for mitochondrial disease
[42,43].

Results
Positive results have been reported on several mouse models using the AMPK agonist AICAR [44], and com-
pounds increasing NAD+ concentration, such as the NAD+ precursor NR [45,46] and the inhibitors of NAD+

consuming enzymes (e.g. PARP1) [45]. In contrast, no beneficial effect was observed in the BCS1L KO mouse,
a model of complex III deficiency with a predominant liver disease [47]. However, it should be noted that the
mitochondriogenic effect of PGC1α stimulation has been mainly described in brown adipose tissue and skeletal
muscle, while in the liver it has been associated with the stimulation of gluconeogenesis [48].
Interestingly, increased mitochondrial content has been shown to be protective in non-manifesting carriers

of the LHON mutations, opening the hypothesis of a role in the incomplete penetrance of the disease [49].
Another study suggested that oestrogens have a protective role against LHON, possibly by increasing mitochon-
drial biogenesis [50]. In addition, the same study showed that the stimulation of the mitochondrially localized
oestrogen receptor β by using the phyto-oestrogen 17β-oestradiol improved cell viability by reducing apoptosis,
inducing mitochondrial biogenesis and strongly reducing the levels of ROS. These data open the possibility of
using phyto-oestradiol topically in LHON.

Outlook
Pharmacological compounds stimulating the mitochondrial biogenesis are currently under clinical trial in
patients with mitochondrial myopathy (Figure 1). In addition, the regulatory data supporting their use in vivo
are accumulating. In particular, pharmacokinetic parameters for NR in healthy volunteers have been recently
reported, suggesting a dosing regimen of 1000 mg b.i.d., which is higher than previously used [51], and one
clinical trial on myopathic patients is ongoing (Figure 1). It is still unclear, however, which the most effective
strategy of stimulating mitochondrial biogenesis is. A second challenge is to develop suitable analytical
methods to detect some of the compounds in blood, as they appear to have extremely short lifespan and to be
degraded very quickly.

Gene therapy approaches
Gene replacement therapy
Rationale
The possibility of re-expressing the wild-type form of a missing or mutated gene is very attractive for all the
genetic diseases, but this is currently a realistic goal only for those conditions affecting a single organ.
Adeno-associated viral vectors (AAVs) are particularly attractive as delivery method because of their favourable
safety profile and the availability of several tissue-specific serotypes. The main limitations concern the limited
cloning capacity and the difficulty in achieving therapeutic expression levels in several tissues.

Results
AAVs have been used to deliver therapeutic genes in several mouse models of mitochondria disorders, includ-
ing the models for ADOA [52], MNGIE [53], and EE [54].
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For both MNGIE and EE, characterized by accumulation of toxic compounds [55], hepatotropic AAV8
vectors aimed at restoring the filter activity of the liver by re-expressing the missing gene. This very same goal
was achieved in EE [56] and MNGIE [57] patients by using liver transplant. This allowed bypassing all the reg-
ulations needed to implement a clinical trial with AAVs. However, it should also be noted that pre-existing
liver disease, as occasionally observed in MNGIE [57] and other diseases, may prevent the use of AAVs as cel-
lular damage may interfere with viral entry into the cells. In addition, liver transplant has also been proposed
as a suitable therapy for other mitochondrial diseases with hepatopathy, such as Alpers disease, provided that
the clinical conditions are not too severe [58,59].
We recently showed that human NDUFS4 was able to partially rescue the phenotype of Ndufs4 KO mice

only when simultaneously administered systemically and intracranially. This highlights the potential, but also
the challenges of targeting multisystem disorders and as well as a complex organ as the brain [60]. In fact, the
AAV9 serotype did not efficiently cross the blood–brain barrier, and mainly targeted glial cells when injected
intracranially in newborns. Interestingly, new engineered serotypes showed great promises in their efficiency to
cross the BBB [61]. Although this has been shown to be limited to rodents [62], future developments may
isolate serotypes with similar tropism targeting human cells.
Several clinical trials (Figure 1) are ongoing using AAVs on LHON disease and one has been completed

using allotropic expression of ND4, i.e. expression of mtDNA-encoded protein from the nucleus. Despite the
absence of solid evidence regarding the import of mtDNA-encoded subunits into mitochondria and insertion
into respiratory complexes, Guy et al. [63] reported amelioration of visual acuity in the injected eyes.
Alternative explanation to this clinical effect could be the presence of a secondary mutation in mtDNA and a
spontaneous recovery that is often observed especially in the m.11778G>A mutation [63].
A similar study was carried out using a single dose (5 × 109 vg/0.05 ml) of rAAV2-ND4 on nine

patients (NTC01267422 [64]). No adverse effects were recorded. In 6/9 patients, visual acuity improved
and visual field was enlarged 9 months after treatment, while other parameters were unchanged.
An open-label Phase I/II clinical trial (NCT02064569) investigated the safety and preliminary efficacy of a

rAAV2/2-ND4 in four dose-escalation cohorts (9 × 109, 3 × 1010, 9 × 1010, 1.8 × 1011 vector genomes/eye).
Overall, the treatment proved to be safe as only mild to moderate adverse effects were reported by all the
patients, such as increase in ocular pressure, ocular pain, vitritis. A clinically significant improvement in best-
corrected visual acuity (i.e. the best vision achievable with the help of correction) was noted in the treated eyes
of 6/14 subjects and a between-eye difference in visual acuity change from baseline was observed in a subset of
patients with disease duration less than 2 years. A phase 3 study is currently ongoing on patients with vision
loss for less than 6 months and between 7 months and 1 year (NCT03406104). Although the results have not
yet been published, some have been made available to the public (https://www.businesswire.com/news/home/
20180619006555/en/GenSight-Biologics-Key-Opinion-Leaders-Highlight-GS010) reporting a preservation of the
retinal ganglion cell macular volume and nerve thickness and an improvement contrast sensitivity in treated
eyes compared with the sham-treated ones. No difference was observed in high-contrast visual acuity.
According to the sponsor, however, the intervention seemed to be more effective on young patients entering
the treatment earlier, with vision loss less than 9 months. These results are promising but await confirmation
and details to be made accessible to be properly evaluated.

Outlook
In spite of the difficulties related to the extremely high production costs and regulatory requirements, new
stamina for the AAV-based gene therapy has been triggered by the positive results of a clinical trial on spinal
muscular atrophy using AAV9, showing remarkable amelioration of the treated patients compared with the
natural history of the disease [65]. It remains anyway challenging to address the safety concerns and comply
with all the regulations as every single vector has to be treated as a new therapeutic agent.

Molecular scissors to shift heteroplasmy
Rationale
The impossibility to manipulate mtDNA in vivo prevented for a long time the development of interventions
aimed at modifying heteroplasmy levels. The introduction of TALENs and ZFN made a major step forward
towards this end.
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Results
Both mitochondrial targeted (mt) TALENs and mtZFNs were shown to be rather effective in shifting the het-
eroplasmy of several cellular models with mutations in mtDNA [66–68]. Interestingly, mitoZNFs were shown
to prevent the germline transmission of mitochondrial mutations by inducing a heteroplasmy shift through the
selective elimination of mutated mtDNA [69]. Very recently, two independent studies demonstrated the feasi-
bility of this approach in vivo using a heteroplasmic mouse model carrying a point mutation in the tRNA for
alanine. Both mtZFNs and mtTALENs were delivered by AAV vectors and proved to be able to significantly
reduce heteroplasmy levels in heart, using mtZFNs, and skeletal muscle, respectively [70,71].
These strategies have been extensively reviewed elsewhere [72], but it is worth noting that the promises and

potential of CRISPR/Cas9 system to manipulate nuclear genome do not apply to the manipulation of mtDNA
due to the impossibility of importing RNAs (such as the guided RNAs which are integral components of the
Cas9 nucleoprotein) into mitochondria. Importantly, other approaches based on import of therapeutic RNAs
are equally very controversial [72].

Outlook
Although extremely promising, these approaches are still in their infancy and more work is warranted to fully
assess their applicability to other models and to address safety issues. However, this is a clever approach that
could, in principle, bypass some of the ethical concerns related to eliminate mtDNA mutations, such as mito-
chondrial replacement therapies (see below).

Shaping mitochondria
Rationale
Opa1 is a GTPase of the inner mitochondrial membrane with key roles in regulating mitochondrial fusion as
well as the structure of mitochondrial cristae. In 2013, Cogliati et al. [73] demonstrated that moderate overex-
pression of Opa1 increased the efficiency of the respiratory chain by regulating the physical and functional
organization of the respiratory complexes into supercomplexes.

Results
We recently reported that moderate overexpression of Opa1 was beneficial in models of mitochondrial enceph-
alopathy and myopathy by stabilizing the defective complexes and supercomplexes [74]. Similarly, moderate
Opa1 overexpression proved to be beneficial in several other conditions characterized by altered mitochondrial
morphology, including denervation-induced muscle atrophy, liver damage, and ischaemic damage [75].
Additional strategies to increase mitochondrial fission/fusion have recently been proposed. For instance,

Mfn2 agonists locking Mfn2 in the closed, inactive state thus promoting fusion, were identified and shown to
effectively ameliorate mitochondrial abnormalities in cell lines carrying various mutations in MFN2, and to
normalize axonal mitochondrial trafficking in sciatic nerves of MFN2 Thr105→Met105 mice, a model of
CMT2A [76]. Future work to assess their efficacy in models of OXPHOS deficiencies is warranted.
Another compound that was proposed to modify mitochondrial morphology is elamipretide (previously

known as MTP-131). Elamipretide is a Szeto and Schiller tripeptide able to penetrate cells and to accumulate
in mitochondria, where it is deemed to bind cardiolipin, a lipidic component of the inner mitochondrial mem-
brane with an important role in regulating the RC activity and shaping mitochondrial cristae [77]. Although
elamipretide has been shown to correct mitochondrial ultrastructure in cell models characterized by altered
mitochondrial morphology, its mechanism is still poorly understood and no evidence that it may be effective in
primary mitochondrial dysfunction has been provided. However, several clinical trials with elamipretide are
currently ongoing for primary mitochondrial disease, primary mitochondrial myopathy, and LHON. Only for
one of them (NCT02367014), aimed at providing evidence for safety and initial efficacy assessment, the results
have been recently published [78]. Elamipretide showed substantially favourable safety profile and improved the
6-minute-walking test in the treated group compared with the placebo group.

Outlook
The correction of mitochondrial ultrastructure and the intervention to increase mitochondrial fusion are very
promising approaches, but several issues need to be address to move towards the clinics. First, it is currently
unknown whether prolonged activation of Opa1 can have toxic effects. Second, only a few compounds have
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been shown to modify fission/fusion processes and/or to shape mitochondrial cristae through Opa1-dependent
or -independent processes. Future work will need to find new approaches to tune the activity of Opa1 or other
proteins of the fission/fusion machinery.

Pre-implantation genetic diagnosis and mitochondrial
replacement therapy
Rationale
Pre-implantation genetic diagnosis is offered in specialized centres, but it has the limit of potential hetero-
plasmy levels drifting in the embryo over time leading to disease. Since mtDNA mutations are maternally
inherited, the transmission of pathogenic mutations can be prevented by reproductive techniques aimed at
replacing the mitochondria in oocytes of carrier women.

Results
Two techniques have been developed to avoid transmission of mutations in mtDNA [79,80]. The first has been
developed in the U.K., where the treatment is now licensed for use in humans, and is based on the pronuclear
transfer from an affected donor into an enucleated healthy embryo shortly after completion of meiosis [81].
Importantly, the carryover-mutated mtDNA was less than 2% in the majority of the embryos, reducing the prob-
ability of a later proliferation of mutant mtDNA, as observed when mutant DNA carryover was above 4%. The
alternative approach, developed in the U.S.A., is based on the maternal spindle transfer, in which the nucleus of
the affected mother’s oocyte is transferred to an enucleated donor’s oocyte before fertilization with the father’s
sperm [82]. In this case, the mutated mtDNA carryover was ∼1%, although some stem cell lines generated in the
present study progressively lost the donor mtDNA reversing to the maternal one, possibly related to specific hap-
lotypes conferring a replicative advantage, as suggested by the presence of a specific polymorphism in the D-loop
of the preferred haplotype. The first baby born by using the spindle transfer technique was reported last year in a
highly controversial article [83]. Ethical and technical issues were raised in the editorial comment and further arti-
cles. Consent form and informative material were not tailored to the procedure and a two-step procedure was per-
formed under two different legislations (US and Mexico) raising major ethical concerns. From technical point of
view, details regarding the use of electrofusion and explanation of high rate degeneration of oocytes were missing.
Finally, although positive, the outcomes of the heteroplasmy levels were more than 2% of carryover and therefore
not optimal to assure an absent or very low risk to develop disease [84].

Outlook
Despite the technical and ethical concerns that have challenged and will continue to challenge the mitochon-
drial replacement, this ‘world-first birth’ represented a pivotal step for translating the therapy in clinical trial.
In 2015, UK regulatory bodies have approved the use of mitochondrial replacement therapy for use in selected
patients by embryologists with high level of expertise with a planned long-term follow-up of the children
born [85].

Towards the development of clinical trials
Preclinical studies are opening the way to have effective and safe translatable cure for the patients. Therefore,
there is an urgency to identify clinical end-points, accurate biomarkers, and appropriate outcome measures for
designing a clinical trial. The first major effort of the scientific community has been in the study of disease
natural history defined as ‘natural course of a disease from the time immediately prior to its inception, progres-
sing through its pre-symptomatic phase and different clinical stages to the point where the disease has ended
without external intervention’ [86]. In a systematic literature review, Rahman et al. identified 35 natural history
studies encompassing 28 mitochondrial disease entities. Data from those studies have helped to redefine diag-
nostic criteria for classical clinical syndromes and to establish a clinical baseline for comparison in single-arm
clinical trials of novel therapies [87]. However, the majority of the natural history studies are currently based
on retrospective analysis of previously diagnosed cohort of patients with limits in data quality, and this has
recently emerged as a primary need in the field [88]. In addition, clinical rating scales dedicated to mitochon-
drial patients such International Pediatric Mitochondrial Disease and Newcastle Mitochondrial Disease Adult
Scales and motor functional and quality-of-life scales adopted from previous trials in neuromuscular disorders
have been validated for clinical trial readiness in mitochondrial disorders [88].
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Conclusions
The development of new therapies for mitochondrial diseases is moving fast at the preclinical level, but the
clinical translation is lagging behind. The only treatment approved by the European Medicines Agency is cur-
rently based on the use of idebenone for LHON. Interestingly, relatively large clinical trials have supported its
efficacy in LHON patients, underscoring the necessity of rigorously designed trials to determine the efficacy of
new drugs, a goal often difficult to achieve given the rarity of most of the syndromes. However, an increasing
number of clinical trials are being implemented and we expect major steps forward in the coming years.
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