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Humans are variously and continuously exposed to a wide range of different DNA-dam-
aging agents, some of which are classed as carcinogens. DNA damage can arise from
exposure to exogenous agents, but damage from endogenous processes is probably far
more prevalent. That said, epidemiological studies of migrant populations from regions of
low cancer risk to high cancer risk countries point to a role for environmental and/or life-
style factors playing a pivotal part in cancer aetiology. One might reasonably surmise
from this that carcinogens found in our environment or diet are culpable. Exposure to car-
cinogens is associated with various forms of DNA damage such as single-stand breaks,
double-strand breaks, covalently bound chemical DNA adducts, oxidative-induced
lesions and DNA–DNA or DNA–protein cross-links. This review predominantly concen-
trates on DNA damage induced by the following carcinogens: polycyclic aromatic hydro-
carbons, heterocyclic aromatic amines, mycotoxins, ultraviolet light, ionising radiation,
aristolochic acid, nitrosamines and particulate matter. Additionally, we allude to some of
the cancer types where there is molecular epidemiological evidence that these agents are
aetiological risk factors. The complex role that carcinogens play in the pathophysiology
of cancer development remains obscure, but DNA damage remains pivotal to this
process.

Introduction
DNA damage occurs through exogenous and endogenous processes. Carcinogens, irrespective of their
origin, have the ability to evoke the development of DNA damage through a variety of mechanisms.
This includes, for instance, covalent binding of carcinogen with DNA or DNA double-strand breaks
(DSBs) formed as a result of ionising radiation (IR)-induced free radical generation [1,2]. Carcinogens
are categorised as being chemical or physical agents [3], causing DNA damage attributable to their
physico-chemical properties, such as DNA molecule distortion or DNA cross-linking [3–6]. Table 1
shows a small subset of environmental and/or dietary carcinogens; however, there are multiple other
examples to which humans are potentially exposed (Table 1).
Exposure to carcinogens can either directly [7] or indirectly [1,8] induce DNA damage. Subsequent

repair mechanisms may result in alterations in DNA sequences, i.e. mutations [2,9]. Induced muta-
tions may be initiating events in cancer causation, when the damage is fixed within oncogenes or
tumour suppressor genes [10]. Such risk may also be directly influenced by individual susceptibility
and genetic instability [11]. For example, in the inherited genetic disorder Xeroderma Pigmentosum
(XP), mutations in the XP proteins disrupt DNA repair resulting in the build-up of sunlight-induced
lesions in skin DNA and a high rate of skin cancer [12].

Types of DNA damage: direct- and indirect-acting
carcinogens
Carcinogens may fall into two categories: activation-dependent and activation-independent. Those
which do not require metabolic activation or any molecular modification in order to induce DNA
damage are termed direct-acting carcinogens and examples include nitrosamines, ultraviolet (UV), IR
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and alkylating agents [5,7,26,35]. These agents have the capability to interact directly with DNA and other cel-
lular components due to their electrophilic groups. These electrophilic groups exhibit an inherent reactivity,
allowing them to interact with nitrogen and oxygen atoms within negatively charged cellular macromolecules
to induce molecular modifications and distortion [3]. Alteration of DNA bases causes a disarrangement of the
genetic material and formation of DNA adducts depending on the type of carcinogen. Failure within DNA
repair mechanisms allows DNA lesions to be inherited by daughter cells [7], eventually leading to the accumu-
lation of DNA damage and potentially the development of cancer.

Table 1 Examples of candidate cancer-causing agents

Candidate agents Overview References

Heterocyclic aromatic
amines (HAAs)

HAAs are activation-dependent, heat-induced mutagenic agents predominantly present in
foodstuffs containing nitrogenous and creatine components. Molecular structure of HAAs is
dependent on the temperature and level of heat transferred to the food. Can generate SSBs,
chromosomal aberrations and DNA adducts in guanine-rich regions. Activated metabolites can
attack N2-position of guanine (most common) or C8-atom of guanine (occurs less frequently).

[13–15]

Polycyclic aromatic
hydrocarbons (PAHs)

Combustion of organic matter results in the generation of PAHs. These are the most abundant
indirect-acting carcinogens to which humans are exposed to on a daily basis. Exposure has
been associated with the development of breast, skin or lung cancer. Bioactivation of PAHs is
required in order for these agents to exhibit mutagenic properties, which is primarily mediated
by cytochrome P450 enzymes. Bioactivated metabolites target multiple genomic sites, including
guanine and adenine bases via PAH diol epoxides. This results in the generation of bulky BPdG
chemical DNA adducts; examples include quinone-mediated cross-linking of N7 position of
guanine and N3 of adenine.

[11,16]

Ultraviolet (UV) Direct- and indirect-acting genotoxic cancer-causing agent, primarily absorbed by epidermal
components, such as DNA bases (thymine and cytosine) and proteins. This agent is implicated
in the causation of skin tumours by targeting pyrimidine bases. Exposure to the epidermis and
dermis induces both the up-regulation of cell proliferation and photoproduct generation,
including CPDs and (6–4) pyrimidine pyrimidines.

[5,17–19]

Aristolochic acid (AA) Naturally derived acids from Aristolochiaceae plants. Ingestion of these carcinogens shown to
be largely associated with nephrotoxicity of the renal cortex and further damage to the bladder
and liver; very likely due to the development of bulky chemical DNA adducts. Most abundant
and mutagenic form of DNA adduct associated with AA is dA-AA. In exons 2–11 of TP53,
bulky chemical DNA adducts result in mutations, primarily of A:T base pairs.

[20–24]

Nitrosamines Metabolism of nitrosamines subsequently induces alkylating DNA damage via the formation of
DNA adducts such as O6-alkylguanine, oxidative stress and production of diazonium ions.
Humans are exposed to these agents through various foods and tobacco smoke.

[25,26]

Mycotoxins Mycotoxins are fungal-derived metabolites, which primarily contaminate food. The most
commonly found mycotoxin is aflatoxin B1, discovered in the early 1960s. These are indirect
carcinogens, which require bioactivation via CYP to generate DNA adducts. Adduct formation
targeting guanine bases, which induces G→ T transversions at codon 249 in TP53.

[27–29]

Ionising radiation (IR) Exposure to ionising radiation induces DNA damage in an indirect or direct manner. The indirect
carcinogenic effect is mediated via water radiolysis, which promotes the production of ROS
resulting in oxidative damage, which can result in SSBs. The direct effect involves direct
interaction of electrons with DNA resulting in molecular distortion and DSBs.

[5,6]

Asbestos Asbestos is highly carcinogenic and used historically in industry and household applications.
Exposure to fibres is directly linked to asbestosis, pleural plaques and mesothelioma.
Dimension, shape and chemical composition are factors in asbestos pathogenicity. Damage
occurs through oxidative stress (may give rise to DNA strand breaks), fibrosis and interaction
with the mitotic apparatus of dividing cells. Synergism in the causation of lung cancer is seen
with other mutagens, including PAHs, due to asbestos’ insoluble core via which adsorbed
carcinogens are delivered to target sites where they exert their genotoxic effects.

[30,31]

Nanoparticles (NPs) Nanotechnology engineering has seen increasing usage of nanoparticles in medical, cosmetics
and electronic industries. NPs have one dimension <100 nm, aiding cell penetration following
inhalation, dermal or oral exposure with consequent ability to cause DNA damage. Damage can
be direct and genotoxic effects include DNA adducts resulting from oxidative damage,
epigenetic changes and DNA strand breaks.

[32–34]
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Indirect-acting carcinogens are relatively unreactive parent compounds that include polycyclic aromatic
hydrocarbons (PAHs), heterocyclic aromatic amines (HAAs), N-nitrosamines, mycotoxins and aristolochic acid
(AA). These typically require bioactivation in host cells to transform them into carcinogenic metabolites or
reactive intermediates that are capable of exerting genotoxic effects [1,8,36]. This is often mediated by phase I
and/or II metabolic reactions. Phase I reactions include oxidation, reduction or hydrolysis, mainly involving
cytochrome P450 (CYP) mixed function oxidase isoforms, commonly referred to as CYPs. These enzymes have
the ability to activate carcinogens independently or in conjugation with phase II enzymes such as sulfotrans-
ferases and N-acetyltransferase [8,37,38]. A classic example is the bioactivation process of benzo[a]pyrene (B[a]
P), which undergoes a multi-step process involving CYP1A1 and epoxide hydrolase-mediated conversion to r7,
t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) (Figure 1). Bulky chemical adducts are
commonly seen as a result of the interaction between activated carcinogens and DNA, e.g. reactive nitrenium
ions formed through the reduction and hydrolysation of AA, yield bulky purine DNA adducts at the exocyclic
amino group of purines [39]. Nitrosamines encompass a large diverse group of compounds formed by various
combinations of amines and nitrogen functional groups. Some nitrosamines are known to be direct-acting car-
cinogens such as those formed in foodstuffs and are implicated in oesophageal cancer or stomach cancer, while
others such as the tobacco-specific lung pro-carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone are
bioactivated [40]. Other work shows that nitrosamines can be locally activated within the urothelium [41]. In
contrast, α-nitrosoamino aldehydes are highly reactive compounds which are direct-acting mutagens [42]. We
see the relevance of this in the high incidence of gastric cancers in certain regions associated with consumption
of particular foodstuffs [43].
Although indirect carcinogens are reliant on activation, a few have the ability to enhance bioactivation by

inducing changes in gene expression. PAHs such as B[a]P increase the expression in members of CYP450
family by acting as exogenous ligands of the cytosolic aryl hydrocarbon receptor (AhR)–aromatic receptor
nuclear translocator complex [36,44]. Such enzymes are also involved in bioactivation of HAAs, PAHs, AA and
aflatoxins, therefore potentially increasing the metabolism and subsequent exposure of DNA to reactive inter-
mediates [1]. Expression of such enzymes has been investigated in tissues possessing the capability of bioacti-
vating carcinogens to reactive electrophiles [45,46].

UV-induced damage
UV-induced lesions promote chemical modification and structural distortion of DNA by forming photopro-
ducts and oxidative stress. Production of photoproducts, such as cyclobutane pyrimidine dimers (CPDs),
pyrimidine-(6–4)-pyrimidone photoproducts and their dewar isomers, is achieved through the direct absorp-
tion of UVB (290–320 nm) incident photons by DNA bases and methylation of cysteine bases [47,48]. CPDs
account for 75% of the mutations, which are induced by UV [47,49]. T-C and C-C CPD lesions are predomin-
ant in the tumour suppressor TP53 and in patients with skin cancer. T-T CPDs are less persistent as

Figure 1. Benzo[a]pyrene (B[a]P) bioactivation. Major mechanism of DNA binding by B[a]P, a pro-carcinogenic PAH.
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eradication of these dimers is induced by insertion of adenine bases by DNA repair mechanisms [17]. Lesions
that are difficult to remove result in the following: stalling of DNA and RNA polymerase, reduction in DNA
replication, protein synthesis and mRNA synthesis [49].
UVA (320–400 nm), a poorly absorbed radiation by DNA [50] with an unknown mutagenic effect, is sug-

gested to be associated with promoting DNA damage by oxidative stress through an activation-independent
route [17,50–55]. UVA photons absorbed by photosensitisers promote photo-oxidation reactions largely giving
rise to single oxygen molecules or highly reactive electrons, which subsequently target guanine bases for hydra-
tion and deprotonation. Hydration of guanine bases promotes production of 8-oxo7,8-dihydroguanyl
(8-oxodGuo) radicals which are considered to be a miscoding lesion (a lesion capable of base pairing with
either a cytosine or/and adenine residue) in DNA and a marker for oxidative stress [5,51]. UV-derived
8-oxodGuo radicals have not been shown to promote G:T transversions in mammalian cells which are a
common hallmark for 8-oxodGuo-induced mutations [51,52]. However, these lesions are known to cause
molecular distortion by changing the structure of purine bases within DNA, but other mutagenic factors are
likely to be linked with UVA-induced damage [48].

Chemical-induced bulky DNA lesions
Bulky chemical DNA adducts are formed when a reactive electrophilic carcinogen, formed by the metabolism
of an indirect carcinogen, binds to a particular nucleophilic moiety in DNA. Nucleophilic targets of the reactive
carcinogen include nitrogen and oxygen atoms within the bases and phosphodiester backbone of DNA. The
binding of the electrophile to a nucleophile is dependent on the electrophilic strength of the carcinogen
[56–58]. Common target sites on DNA include N and O of guanine or N of adenine [56] (see Table 1).
Because generation of such adducts leaves the replication process prone to error, the presence of DNA adducts
results in replication arrest to facilitate repair mechanisms being recruited to remove the covalently bonded
chemical [2]. Unsuccessful repair of the damage often results in transversion or transition mutations. An
example of this is seen with a reactive intermediate of the mycotoxin, aflatoxin B1 (AFB1). AFB1–8,9-epoxide
interacts with guanine bases in hepatocyte DNA to form adducts [27,28,59]. A common result of replication
errors induced by AFB1 is a transversion mutation at codon 249 in exon 7 in TP53, where guanine is
substituted by thymine [59].

Oxidative damage
Oxidative-induced DNA damage is formed due to either exogenous or endogenous factors such as UVA, IR or
endogenously generated oxygen molecules, which induce intracellular oxidative stress. The most prevalent
sources of primarily induced oxidative stress include reactive oxygen species (ROS), such as hydroxyl radicals
(OH·), singlet oxygen or reactive nitrogen species such as peroxynitrite [60]. These mutagenic species are
known to interact with macromolecules causing defects in DNA synthesis and repair mechanisms, as well as
inactivating various key proteins and repair enzymes. Guanine bases are the main target for these species, espe-
cially ROS [60–63]. ROS-induced damage forms modified bases, apurinic/apyrimidinic (AP) sites and single-
strand breaks (SSBs). The addition of OH· at position C8 within the guanine ring generates the oxidative
product, 8-oxo-7,8-dihydro-20-deoxyguanosine (8-oxodG) [60–62]. Similarly, the addition of OH· at position
C8 of deoxyadenosine generates the oxidative product 8-oxo-7,8-dihydro-20-deoxyadenosine (8-oxodA). These
radicals are capable of further reduction or oxidation forming 2,6-diamino-4-hydroxy-5-formamidopyrimidine
(FapyGua) or 8-oxo-7,8-dihydroguanine (8-oxoG), in deoxyguanosine or 4,6-diamino-5-formamidopyrimidine
(FapyA) or 7,8-dihydro-8-oxoadenine (8-oxoA) in deoxyadenosine. These are non-coding mutagenic DNA
bases (cannot be copied by the constitutive replication machinery) [60,63]. Another prevalent oxidative product
is thymine glycol, produced by the insertion of OH· at position C5 of thymine rings [63]. Similarly, another
oxidation product of cytosine is cytosine glycol, which upon deamination leads to the formation of uracil
glycol. These bases are removed by DNA glycosylase enzyme through base excision repair (BER) [60,61,63].
Accumulation of these modified bases over time enhances genomic structure defects and instability. For
instance, thymine glycol-induced conformational alterations modify telomeres [64], with 8-oxoDG also playing
a role.

Cross-linking damage
Not only do many chemotherapeutic agents (e.g. cisplatin) form DNA cross-links, but also cross-links can
result from the endogenous generation of malondialdehyde and acetaldehyde, which can form either in
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combination or in isolation [4,65]. Cross-linking agents are often clastogens, their exposure resulting in
chromosomal aberrations in the form of broken fragments of chromosomes [66]. They generate what can be
pre-mutagenic lesions via the formation of covalent bonds between two nucleotide residues (e.g. two exocyclic
guanine amino groups) in either the same strand (known as an intrastrand link) or opposite strands (known as
interstrand links). Intrastrand links are often repaired via nucleotide excision repair (NER) and homologous
recombination (HR). Intrastrand and interstrand links are generated when the cross-linking agent possesses
two independent reactive groups, which then react with the DNA base groupings on either the same or the
opposing strands. Common targets of the nucleotides for interstrand links include N7 of guanine or the exo-
cyclic N2 amino group of guanine on opposite strands [4]. Interstrand links are toxic DNA lesions that inhibit
replication and transcription of the affected DNA, due to the physical obstruction of strand separation [67]. If
interstrand link lesions remain unrepaired in the mammalian genome, they can result in catastrophic cell
breakdown [4,66,67].

Single- and double-strand breaks
SSBs occur as a consequence of endonuclease enzyme activity during base excision repair [68]. These can be
induced by numerous different exogenous and endogenous elements such as UV, IR, B[a]P, mycotoxins and a
vast array of intracellular reactions activating the formation of radicals or enzymes including nucleases [68–71].
The most common endogenous source associated with the formation of SSBs is the presence of OH· within
cells [68,70]. OH· radicals are induced during oxidative stress and through Fenton’s reaction, which involves
the intracellular reduction in hydrogen peroxide (H₂O₂) by a transition ion, mostly iron²+ (Fe²+) [68,70]. OH·

radicals interact with hydrogen atoms within DNA backbone causing catalysis of phosphodiester bonds result-
ing in the formation of phosphoglycolate and DNA lesions [70]. Carcinogen-generated radicals also trigger oxi-
dative stress, including a series of events leading to the production of miscoding DNA bases such as thymine
glycerol and activation of nucleases [68]. Nuclease activation results in a scenario that resembles the process of
apoptosis because of cleavage of the DNA backbone, creating DNA strand lesions [68].
DSBs, if left unrepaired or misrepaired (or misreplicated), can result in cell death, genetic instability and car-

cinogenesis [72]. The formation of DSBs can be caused endogenously, e.g. during meiosis I DSBs are intention-
ally induced to ensure chromosomal segregation; they can also be exogenously induced by IR or chemical
carcinogens [72,73]. It should be noted that other types of damage can lead to DSBs, and these are often asso-
ciated with the action of exogenous agents [74]. IR is a significant external agent that induces DSBs directly
and indirectly, primarily damage mediated by ROS generated by radiolysis of water. Direct induction of
damage occurs when a high-energy particle collides with the phosphodiester backbone of the DNA strands,
causing cleavage [56,73]. IR-mediated damage via ROS generation can be targeted by BER, thus generating
SSBs. Repair of clustered damage in both strands of DNA can result in closely opposing SSBs, which then
present in the form of DSBs [72]. Subsequent repair and processing of DSBs can lead to mutations, loss of het-
erozygosity and chromosomal translocations resulting in cell death [73].

Human studies of cancers associated with
carcinogen-induced DNA damage
There are many human studies implicating environmental- and/or dietary-associated carcinogen exposures in
the aetiology of cancer. Carcinogen-DNA damage formed post-combustion of tobacco implicated in the aeti-
ology of lung cancer is a prime example [75]. Studies of migrant populations that demonstrate a generational
change in susceptibility to cancers such as breast, prostate, colorectal and stomach cancer also document expos-
ure to DNA-damaging carcinogens [76]. For many of these cancers, there can be compelling evidence, through
molecular epidemiology studies, that carcinogen exposure is a pivotal causative factor [77,78]. While the patho-
physiology of cancer is undoubtedly complex, many different agents can generate specific forms of DNA
damage. Within the scope of this review, only a few typical examples will be highlighted.

Lung cancer and tobacco smoking
Combustion of a cigarette during smoking generates thousands of agents, many of which have the potential to
be DNA damaging [79]. It is estimated, in countries where tobacco smoking is common, that 90% of lung
cancer cases are directly attributed to smoking [80]; however, it is also well established that smoking-derived
carcinogens induce cancers at other tissue sites [81]. Carcinogenic PAHs and tobacco-specific nitrosamines are
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the major carcinogens found in tobacco smoke, generated in the 900°C combustion environment at a lit cigar-
ette tip induced when a smoker puffs. Following bioactivation of PAHs, primarily via the CYP mixed function
oxidase system, their electrophilic metabolites covalently bind to nucleophilic sites on macromolecules, includ-
ing DNA bases, to form bulky chemical DNA adducts. This is shown in Figure 1 for the pro-carcinogen B[a]P
and its major DNA adduct r7,t8,t9-trihydroxy-c-10-(N2-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene
(BPdG). Formation of PAH-DNA adducts can result in the induction of G-T transversions in TP53, due to
DNA replication of unrepaired DNA, which produces mutations at sites of DNA adduct formation. At codon
157 in TP53 (a hotspot for mutation induction), G-T transversions are frequently seen in smokers’ lung
cancers, but not in never-smokers [59].

Prostate cancer and carcinogenic PAH exposure
Residents of countries such as India, China and Japan have typically been at a lower risk of prostate cancer
compared with UK residents; however, risk within such ethnic groupings rises in the grandchildren of migrants
from India, China or Japan to North/Western Europe, implicating environmental and/or dietary exposures as
causative factors [45,46]. Normal human prostate has been shown to possess the extra-hepatic metabolic cap-
acity of phase I and II enzymes able to bioactivate many pro-carcinogens [45]. In fact, some such as CYP1B1
are expressed at a higher level in the cancer-susceptible peripheral zone of human prostate compared with the
transition zone [82]. A small cohort study of 12 UK- versus 14 India-resident individuals was undertaken to

A

B

Figure 2. PAH-DNA immunostaining of human prostate.

(A) Representative example of PAH-DNA immunostaining in a UK prostate sample stained for carcinogenic PAH-DNA adducts:

(left panel) specific PAH-DNA adduct staining is shown by nuclei stained pink and indicated by arrows; (middle panel) the

corresponding absorbed serum control shows the same area with no staining and (right panel) haematoxylin staining of the

same area shows localisation of nuclei. (B) Values for PAH-DNA adducts/108 nucleotides, for 10 prostate samples from the

U.K. and 13 samples from India, were obtained from IHC using ACIS OD/nucleus values (with absorbed serum subtracted) by

calculation from a standard curve [85,86].
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explore the level of expression of various proteins in benign prostate tissue, including CYP1B1, oestrogen
receptor-alpha (ERα) and oestrogen receptor-beta (ERβ). Expression of CYP1B1, an enzyme potentially
involved in the metabolic bioactivation of PAHs or HAAs, was markedly higher in UK individuals. Increased
ERβ expression correlated with under-expression of CYP1B1, especially in Indian residents [46]. Figure 2
shows an immunostaining of carcinogenic PAH-DNA adducts in the peripheral zone of cancer-free prostates
from the U.K. and India stained with antiserum specific for a family of carcinogenic PAHs bound to DNA, and
semi-quantified by the Automated Cellular Imaging System (ACIS) [83]. The prostate tissues from India were
obtained at a time (2008–2010) when radical retropubic prostatectomy was a rare procedure in this region [84].
While Figure 2B shows a marked interindividual variation in adduct levels, there is a relatively similar range of
PAH-DNA adduct levels in the prostates from both groups. One might argue that these groups were very
small, and may not be completely representative. Furthermore, India has, in recent years, seen an increasing
Westernisation of lifestyle and these tissues would likely have been sourced from individuals from a high socio-
economic class. Changes in prostate cancer incidence remain to be seen [76].

Urothelial carcinoma and AA
Balkan endemic nephropathy (BEN) and aristolochic acid nephropathy (AAN) [formerly known as Chinese
herb nephropathy (CHN)] are conditions with significant evidence of a carcinogen causing DNA damage. BEN
and CHN are associated with a high incidence of upper tract urothelial carcinoma and renal failure, both
caused by ingestion of AA. Exposure and subsequent metabolism (bioactivation) of AA lead to the formation
of aristolactam AL-DNA adducts in urothelial tissue [87,88]. These bulky chemical DNA adducts were shown
to be directly linked to A:T to T:A transversion mutations in TP53 in a study conducted by Grollman and col-
leagues [20,89]. There is significant evidence that AA is both a powerful nephrotoxic and carcinogenic agent
with an extremely short latency period, not only in animals but also in humans [90]. In a typical human
subject presenting with a urothelial malignancy 6 years post-presentation with AA-associated nephropathy,
mutation analysis showed AAG→ TAG mutations in codon 139 (Lys→ Stop) of exon 5 of TP53 [91].

Measurements of DNA damage
Given the differing forms of DNA damage, a range of techniques measuring different endpoints have been
developed. Antisera elicited against DNA adducts or carcinogen-modified DNA samples have been used to
detect adducts of specific classes by immunoassay or immunohistochemistry [86]. For bulky chemical DNA
adducts, where chemical characterisation is not required, the 32P-postlabelling method based on multi-
dimensional thin layer chromatography has been commonly used [83,85,86]. To determine and quantify levels
of DNA SSBs or DSBs, alkaline or neutral versions, respectively, of the single cell-gel electrophoresis (‘comet’)
assay can be used [92,93]. Post-lysis incorporation of enzymes [formamidopyrimidine DNA glycosylase (Fpg)
or 8-oxoGua DNA glycosylase (OGG1) to measure 8-oxoGua in DNA] to cleave bulky lesions or oxidative
damage into SSBs can be employed to discriminate an agent’s mechanism of DNA damage induction or to
enhance the sensitivity of the alkaline version of the comet assay [94]. The cytokinesis-block micronucleus
assay determines levels of chromosomal damage, primarily clastogenic or aneuploidy effects [95,96]. Endpoints
of oxidative damage such 8-hydroxy-20-deoxyguanosine (8-OHdG) can be determined using competitive
enzyme-linked immunosorbent assay (ELISA) [97]. Highly sensitive variations in the chemical-specific mass
spectrometry-based methods have been developed and used very successfully to obtain precise characterisation
of DNA adducts in human tissues [98,99].

Repair mechanisms
DNA repair mechanisms [BER, NER, HR and non-homologous end-joining (NHEJ)] maintain genomic stabil-
ity by eradicating DNA damage induced prior to replication completion [100]. BER is activated upon spontan-
eous depurination, deamination, methylation and oxidation of DNA bases. It is initiated by hydrolysis of
N-glycosyl bond between deoxyribose sugar and DNA base by glycosylase enzyme, creating an abasic site (i.e.
AP site) [71,100]. The AP site is cleaved by two enzymes: 50-AP endonuclease and deoxyribose phosphodiester-
ase, inducing a nucleotide gap [71,100]. The gap is recovered by DNA polymerase β, which uses a template
strand to introduce a new nucleotide, and DNA ligase, which stabilises and seals the phosphate-sugar backbone.
An example of BER activation includes the substitution of normal DNA base by oxidative-induced base such as
thymine glycol or 8-oxoguanine [67].
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NER is a highly conserved process initiated by a multi-subunit complex promoting eradication of
UV-induced lesions such as CPDs and bulky chemical-induced DNA adducts (see Figure 1) [71,101]. The
mechanism is divided into five stages: recognition, incision, excision, DNA synthesis and DNA ligation [71].
Recognition of DNA damage occurs either due to stalling of RNA polymerase during transcription or by a
repair complex, XPC-HHR23B [71,100,101]. Other repair components are recruited such as TFIIH, XPB and
XPD, which perform helicase activity and unwind the DNA developing a bubble containing 24–30 nucleotides,
followed by the recruitment of pre-incision components (XPA, RPA and XPG). XPF–ERCC1 incision complex
removes the oligonucleotide leaving behind a gap within the DNA strand, which is synthesised and sealed by
DNA polymerase δ/ε and DNA ligase [71,100,101].
There are two subtypes of NHEJ: classical (C-NHEJ) and alternative (A-NHEJ), both of which require no

template for repair of DSB lesions [9]. C-NHEJ encompasses four steps: DNA end recognition, bridging and
stabilising of ends, processing and ligation. This process requires heterodimer Ku, containing Ku70/80 subunits.
Ku has a high affinity to DNA ends enabling it to localise and bind to the phosphate backbone situated at the
break. Once bound, Ku acts as a scaffold recruiting other complexes to allow bridging and to create ligatable
ends. DNA ligase IV is activated and stabilised by XRCC4—allowing ligation of the broken ends to repair the
DSB [9,102]. Mutation or inhibition of C-NHEJ initiates A-NHEJ, which induces complex indels (insertion/
deletion) in the repair junctions affecting genome integrity [9].
HR is predominantly involved in the repair of DSBs and also interstrand cross-links in conjunction with

NER. HR utilises sister chromatids as a template ensuring genetic information is retained. Owing to the use of
similar/identical nucleotide sequences as a template, the repair can only occur in the S-/G2-phases. HR follows
a process of a homology search and DNA strand invasion, which is mediated by RAD51 [103]. DSBs allow for
the assembly of RAD51 filaments required for the strand invasion where the invading 30-end of a template
duplex is positioned to initiate repair. The principle of HR allows the exchange of DNA preventing loss of
genetic information and providing support for DNA replication in the case of broken or stalled replication
forks [103,104]. The distinction between error-prone and error-free DNA repair appears to be an interplay
between the DNA repair mechanism and the lesion being repaired; for instance, NHEJ has been regarded as
error-prone, but this might have been overestimated, whereas HR, which is typically described as error-free, is
increasingly being considered to be highly mutagenic [9].

Conclusion
Cancer is a complex multi-stage process that likely starts with an initiating mutation post-exposure to a
DNA-damaging agent, which is followed by mechanisms such as inflammation [105]. However, it may be that
not all mutagens are carcinogens. For instance, there are agents that test positive for mutagenicity in
Salmonella typhimurium (i.e. the Ames test), but appear to be non-carcinogenic in rodents, e.g. benzene
amines and substituted benzene amines [106]; the validity of these observations remains a subject of debate
even after several decades. Exposure to carcinogens leads to various forms of DNA damage through indirect
and direct pathways. DNA damage can also be implicated in other pathologies, such as neurodegenerative
disease [107]. Identification of mutation spectra resulting from carcinogen exposures could give rise to inter-
vention studies resulting in reduced cancer risk in certain cases [108]. For many cancers that may have a
dietary and/or lifestyle component [109], there remain enormous gaps in our knowledge regarding candidate
causative agents, the interaction between metabolic bioactivation to DNA-damaging species and subsequent
repair of the DNA lesion, and the following processes that lead to cancer. Understanding this complex interplay
is critical towards understanding the aetiology of this disease.
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