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PrimPol, (primase–polymerase), the most recently identified eukaryotic polymerase, has
roles in both nuclear and mitochondrial DNA maintenance. PrimPol is capable of acting
as a DNA polymerase, with the ability to extend primers and also bypass a variety of oxi-
dative and photolesions. In addition, PrimPol also functions as a primase, catalysing the
preferential formation of DNA primers in a zinc finger-dependent manner. Although
PrimPol’s catalytic activities have been uncovered in vitro, we still know little about how
and why it is targeted to the mitochondrion and what its key roles are in the maintenance
of this multicopy DNA molecule. Unlike nuclear DNA, the mammalian mitochondrial
genome is circular and the organelle has many unique proteins essential for its mainten-
ance, presenting a differing environment within which PrimPol must function. Here, we
discuss what is currently known about the mechanisms of DNA replication in the mito-
chondrion, the proteins that carry out these processes and how PrimPol is likely to be
involved in assisting this vital cellular process.

Mitochondrial DNA — organisation and structure
Mammalian mitochondria contain multiple copies (∼1000 per cell) of a circular DNA molecule
(mtDNA) that is ∼16.5 kb in length [1]. Unlike nuclear genomic DNA, virtually the entire mtDNA
encodes genes that are expressed as 13 proteins, 22 tRNAs and 2 rRNAs with no introns. Only two
non-coding regions exist, the non-coding region (NCR), containing the origin of heavy-strand DNA
replication and the transcription initiation start sites HSP and LSP (light- and heavy-strand promo-
ters), and OL, the origin of light-strand DNA replication.
Strikingly, significant physical differences exist between the mitochondrial genomes of different

eukaryotic organisms (Figure 1). For example, most yeast species have linear mitochondrial genomes
ranging in size from ∼19 to 150 kb, often consisting of circular permutated copies [2]. In plants, the
mitochondrial genome varies even more in size, from ∼200 kb up to a massive 11 Mb, due to a large
number of introns and duplications (reviewed in refs [3,4]). In contrast, kinetoplast DNA found in the
mitochondria of some protists (e.g. Trypanosoma) contains two types of DNA circles, large maxi-
circles (20–40 kb) containing the majority of the coding DNA that are catenated with smaller mini-
circles (0.5–10 kb), which are essential for the production of functional mRNA from the uridylate
encrypted maxi-circles [5,6].
In mammalian cells, mtDNA is organised into nucleoid structures containing ∼1–2 copies of the

genome, although this is likely to vary depending on tissue type and energy demand [1,7,8].
Mitochondrial nucleoids are thought to tether mtDNA to the inner mitochondrial membrane to aid
in organisation, distribution and segregation. Nucleoids consist of many proteins involved in the
maintenance of mtDNA, but the main DNA packaging protein is TFAM, mitochondrial transcription
factor A [9,10]. TFAM is a member of the high-mobility group (HMG) of proteins, containing two
HMG boxes, and is thought to condense DNA by inducing bending and then wrapping it into

Version of Record published:
13 April 2017

Received: 31 October 2016
Revised: 20 February 2017
Accepted: 21 February 2017

© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 513

Biochemical Society Transactions (2017) 45 513–529
DOI: 10.1042/BST20160162

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/45/2/513/431830/bst-2016-0162c.pdf by guest on 17 April 2024

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://crossmark.crossref.org/dialog/?doi=10.1042/BST20160162&domain=pdf&date_stamp=2017-04-13


compacted nucleoid structures. TFAM forms homodimers with each molecule binding a separate DNA strand
in order to generate looped structures or to bring different DNA molecules together leading to condensation
(reviewed in ref. [11]).
One striking feature of mammalian mtDNA is a short triple-stranded region found within the NCR, where

the addition of a third DNA strand (∼0.5 kb), termed 7S DNA, forms a stable displacement D-loop structure
[12]. The D-loop was first identified in electron micrograph images of mtDNA and the 7S DNA was later
found and named due to its sedimentation rate in caesium chloride gradient studies [12,13]. Despite the length
of time since the first identification of 7S DNA and the D-loop, we still know little about its actual function
(reviewed in ref. [14]). Its abundance is found to vary greatly between species and tissues, with only 8% of
mtDNA molecules having D-loops in HeLa cells, while levels of 7S DNA are as high as 55% in human placenta
[15]. The D-loop is thought to have many roles, including acting as a recruitment site for proteins involved in
the organisation of mtDNA into nucleoid structures [16,17], maintaining dNTP pools throughout the cell cycle
[18] and functioning as a key component of replication (see below). Recent work has shown that this structure
may actually be more complex with the identification of an RNA strand on the opposing strand to the 7S DNA
forming an R-loop, which may have a role in the organisation and segregation of mtDNA [19].
A wide range of proteins are involved in the organisation, regulation and replication of the mitochondrial

genome. All of these proteins are encoded within the nuclear genome and must be transported into the organ-
elle as required. Initially, only a few specialised proteins were thought to be required for these processes but, as
techniques have improved, we are now identifying numerous additional factors that play roles in the mainten-
ance of mtDNA. Many of these proteins function in both nuclear and mitochondrial compartments, such as
DNA2, Fen1, PIF1, Rad51C and XRCC3; some require specialised isoforms, such as Fen1 and PIF1, whereas
others use the same isoform to perform these dual roles [20–26].

PrimPol — a novel eukaryotic primase–polymerase
A recent example of such a player is primase–polymerase (PrimPol), a newly discovered member of the
archaeo-eukaryotic primase (AEP) superfamily of primases [27–30] (reviewed in refs [31,32]). As its name sug-
gests, PrimPol can function both as a primase and a polymerase. Many studies have demonstrated that PrimPol
is capable of generating both DNA and RNA primers on single-stranded (ss) DNA templates, albeit with a

Figure 1. The diversity of mitochondrial genomes.

This table presents the wide variety of mtDNA sizes found across different kingdoms and how their organisation and replication

mechanisms differ. Also highlighted are primases and polymerases shown to be, or speculated to be (?), involved in these

processes. Black strands represent parental DNA, with newly synthesised DNA shown in blue and RNA in red.
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strong preference for dNTPs during synthesis, ∼30-fold lower Kd in Mn2+ [28,29,33]. In addition, PrimPol is
also capable of extending a DNA primer in a template-dependent manner and is capable of carrying out transle-
sion synthesis (TLS) across many different DNA lesions, such as 8-oxoguanine (8-oxoG) and 6-4 photoproducts
(6-4 PP) [28,29]. PrimPol contains an N-terminal AEP domain, which contains the key catalytic residues
required for all its synthesis activities. Its C-terminal UL52-like zinc finger domain is essential for its priming
activity, probably by stabilising the protein’s interaction with ssDNA to allow de novo dinucleotide synthesis that
is subsequently extended to form a primer [34]. PrimPol is a remarkably unprocessive polymerase, catalysing the
insertion of only 1–4 nucleotides before disassociating from DNA, and is highly mutagenic, particularly prone to
produce insertion/deletion errors [34–36]. The limited processivity of PrimPol may act to limit its mutagenic
potential. The elucidation of the structure of the catalytic core of PrimPol has highlighted its relatively small
active-site cleft, with limited contacts formed between the protein and the incoming primer strand [37].
PrimPol is localised in both the nucleus and the mitochondrion, suggesting that it plays similar roles in

maintaining DNA integrity in both compartments [28,29]. Notably, avian cells (DT40) lacking PrimPol exhibit
increased sensitivity to many DNA-damaging agents and exhibit a pronounced G2 arrest after exposure to
Ultraviolet (UV) damage [28,29]. Loss of a PrimPol orthologue (PPL2) in Trypanosoma is lethal due to a
failure to complete cell division in G2/M phase [38]. In contrast, loss of PrimPol alone is not overtly detrimen-
tal to mammalian cells, with no obvious signs of damage sensitivity, while knockout mice are viable and born
at Mendelian ratios [28,29]. These differences probably reflect the replication poise of these cells as DT40 cells
are mostly in S-phase, while mammalian cells sit predominantly in G1 phase. However, human cells become
significantly more sensitive to UV damage when PrimPol and Pol η, a damage tolerance TLS polymerase, are
both absent [28,39,40]. Strikingly, loss of PrimPol causes an increase in mtDNA copy number and cells exhibit
reduced rates of mtDNA recovery after ethidium bromide-induced mtDNA loss, suggesting that it is important
for maintaining ‘genome’ stability within this organelle [28,29,41]. PrimPol has also been shown to functionally
interact with many other proteins from both nuclear and mitochondrial compartments. These include mito-
chondrial single-stranded DNA-binding protein (mtSSB), replication protein A (RPA), polymerase delta inter-
acting protein 2 (PolDIP2) and Twinkle, the mitochondrial helicase, which all appear to play roles in regulating
PrimPol’s cellular activities [35,42,43].
However, much is still to be learned about the function of PrimPol in the maintenance of replication in both

mitochondrial and nuclear compartments. Here, we review what is currently known about DNA replication
processes in the mitochondrion and discuss how our newfound knowledge of PrimPol’s activities informs us
about its possible roles in the duplication of mtDNA.

Priming mtDNA replication — how it all begins
The elusive mitochondrial primase
To begin replication, DNA must first be ‘primed’ by the generation of short primers, which the replicase is able
to extend. In the nucleus, RNA primers are synthesised on ssDNA by the Pol α-associated primase (PriS/Pri1-
DNA Primase small subunit) (reviewed in refs [44,45]). However, the enzyme responsible for the initiation of
mammalian mtDNA replication has taken much longer to be discovered and we are only now beginning to
unravel how this process occurs. A mitochondrial primase activity was first identified back in 1985 [46]. This
primase activity isolated from mitochondria was distinct from that of the replicative polymerase γ (Pol γ) and
the mitochondrial RNA polymerase (POLRMT), and was shown to have the ability to catalyse the formation of
RNA primers 9–12 nucleotides long; however, the enzyme responsible for this activity was not identified [46].
This activity was further characterised to show that the primase was capable of generating a 50 oligoribonucleo-
tide primer with a 30 deoxyribonucleotide termini for polymerase extension and was associated with a struc-
tural RNA molecule, which is essential for its activity [47,48]. Although some further insights were gained in
other species and models of mtDNA replication were proposed, little more was learnt about DNA priming or
the elusive ‘primase’ for the next 20 years. The subject of DNA replication initiation in the mitochondrion was
reignited with the discovery that the mitochondrial RNA polymerase, POLRMT, was capable of initiating
lagging-strand DNA replication in vitro [49].

POLRMT — a mitochondrial primase
Mitochondrial RNA polymerase, like the majority of mitochondrial proteins, is encoded within the nuclear
genome and contains an N-terminal mitochondrial targeting sequence, which localises it to this organelle.
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POLRMT is a single-subunit RNA polymerase, which shares significant homology with phage RNA polymerases
[50,51]. The C-terminal domain contains the catalytic core and consists of many conserved sequence blocks,
which form the characteristic thumb and palm structure. Unlike the C-terminus, the N-terminal portion of the
protein has no sequence similarity to the phage polymerases; instead, this region is structurally related to the T7
RNA polymerase (reviewed in ref. [52]). This structural homology is also mirrored in its functional uses as phage
T7 replication employs the RNA polymerase in a similar manner to generate RNA primers [53–55]. In addition,
POLRMT contains a unique N-terminal extension, containing a novel pentapeptide repeat domain that is essen-
tial for promoter-dependent transcription [56]. Unlike T7 RNA polymerase, POLRMT is unable to bind to, bend
and melt promoter DNA alone and requires many accessory factors to begin transcription. These factors include
TFAM, which is thought to alter the DNA structure, allowing initiation, and TFB2M, which interacts directly
with the RNA polymerase to aid its recruitment [57–61]. Similarly, yeast mitochondrial RNA polymerase Rpo41
requires transcription factor Mtf1 for tight DNA binding (reviewed in ref. [62]). POLRMT must be targeted to a
range of diverse promoter sequences and additional factors are likely to be important in its localisation to differ-
ent structural DNA elements (e.g. OL). The generation of POLRMT conditional knockout mice, which have no
identifiable 7S DNA, confirmed that POLRMT has an essential role in replication initiation [63].
Mitochondrial RNA primers (2–10 nucleotides) were first identified at the 50 end of the 7S DNA back in

1979 [64]. More recent work has identified that these primers are generated by POLRMT [49,65,66], originat-
ing from the LSP and HSP, within the NCR [67,68]. As well as acting as the start site for transcription of the
mitochondrial genome, LSP was shown to also be the initiation site for the formation of a persistent RNA–
DNA hybrid, believed to act as a primer for leading-strand DNA replication [69]. Transcription initiated from
the LSP suffers two fates: it is either terminated within a region containing three conserved sequence blocks
(CSBs) and used as a primer for mtDNA replication, or extension continues around the mtDNA molecule to
form a polycistronic transcript, which is then processed further [70,71]. The ends of this short RNA were
shown to map close to previously identified sites of DNA replication initiation, and this RNA species was
found to be sufficient for the initiation of replication in vitro [69,72].
Later work showed that CSB II, a conserved sequence box within the NCR, acted as the termination site for

transcription, controlling the formation of a primer rather than extension to complete transcription [66]. CSB
II has the potential to form a quadruplex structure, due to its G-rich sequence. However, although this region
can form a DNA quadruplex, the majority of these species were actually found to form RNA–DNA hybrid
intermolecular quadruplexes [73,74]. These structures act as strong transcription terminators, leading to the
formation of primers. Thus, the CSB II quadruplex acts as a switch regulating the interplay between transcrip-
tion and replication of mtDNA. The analysis of variation in the CSB II region of human mtDNA has shown
that sequences that cause only weak termination of POLRMT and transcription are avoided. However, all tran-
scription termination events are localised to the same downstream sequences, revealing the importance of the
conservation of this region [75]. Yet, it is still important that when required, these RNA molecules are extended
into full-length species to provide sufficient mRNA, and therefore protein, as required by the organelle. This
switch is also partly controlled by human transcription elongation factor, TEFM, shown to prevent replication
primer formation by driving transcription elongation [76,77]. However, the polymerase must then extend the
primer beyond this quadruplex structure, and it has been shown that Pol γ exhibits a much decreased extension
ability on the CSB II sequence, compared with a mutant CSB II sequence that is unable to form a quadruplex
structure [73]. In addition, these primer ends fall short of the identified 50 ends of newly replicated DNA mole-
cules [78,79], suggesting things may not be quite so straightforward; therefore, we still have much more to
learn about the mechanisms that initiate priming of mtDNA replication in the mitochondrion.
MtDNA is double-stranded (ds) and, therefore, replication must also be initiated on the other strand. The

origin of light-strand replication, OL, is located approximately two-thirds of the way around the genome from
the NCR and resides in a much smaller NCR of DNA occupying only 30 base pair (bp), between the asparagine
and cysteine tRNA genes [80]. POLRMT can generate short RNA primers at OL, allowing complete leading-
and lagging-strand replication (when combined with Pol γ, Twinkle and mtSSB) of a small circular DNA sub-
strate in vitro [49]. Further studies in vivo confirmed that POLRMT is capable of priming specifically at OL and
demonstrated that this specificity is due to a stem loop structure formed when the OL sequence is exposed after
leading-strand replication uncovers this region [81]. This stem loop structure is highly evolutionarily conserved
and mutations affecting its structure are significantly under-represented in the mitochondrial genome, while
insertions and deletions in the loop region are well tolerated, confirming the importance of such a structure
within the mitochondrial genome [82].
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PrimPol — the elusive mitochondrial primase?
The discovery of PrimPol within the mitochondria raises many important questions regarding its role as a
primase within mtDNA replication [28,29]. Although PrimPol has the ability to generate both DNA and RNA
primers [28,29], it has a strong preference for utilising dNTPs rather than rNTPs to synthesise primers, and
studies using PrimPol isolated by fractionation of purified mitochondria showed that the enzyme generated
DNA primers of ∼2–12 nt in length [29]. This is in clear contrast with the original activity of the historically
unassigned ‘mitochondrial primase’; thus, PrimPol appears not to be this elusive protein and suggests that
there is still much more to be uncovered. If it is not the replicative primase, then what are PrimPol’s primase
activities required for within the mitochondrion? Mammalian PrimPol is a non-essential protein as knockout
cell lines and mice strains have been generated, which exhibited no overt phenotypes [28,39]. Thus, it appears
that the role of PrimPol can be complemented by other proteins within the organelle or it may itself have a
‘back-up’ role, which may be only required under certain particular circumstances. Therefore, it is clear that
PrimPol is not the main enzyme responsible for priming of mtDNA replication and, notably, mtDNA copy
number actually increases in the absence of PrimPol [28]. It seems more likely that PrimPol acts to reprime
DNA synthesis, or bypass lesions by TLS, when the replicase is stalled or blocked.

Mitochondrial DNA replication — copying the circle
Pol γ — the mitochondrial polymerase
Although a wide range of polymerases are required to replicate and repair nuclear DNA, only one polymerase
was identified within the mitochondria and this was believed to be responsible for all of the replication and
repair processes that take place within this organelle [83]. Although Pol γ was first identified as early as 1977, it
took many more years for it to be isolated from Drosophila and confirmed as the key mitochondrial replicase
due to the abundance of nuclear polymerases [84,85]. Pol γ is a heterotrimeric complex consisting of two
nuclear-encoded components. POLG1 or A is a 140 kDa subunit belonging to the PolA family of polymerases
and is thought to share a common ancestry with the T-odd polymerase gp5 [86]. It is essential for mtDNA
maintenance and its loss is embryonic lethal [87]. As well as 50–30 polymerase activity, POLG1 also contains a
highly conserved 30–50 exonuclease domain, which confers a key part of its high fidelity, ∼100-fold greater than
that observed for nuclear polymerases [88,89]. In addition, POLG1 also has 50 dRP lyase activity, which allows
the enzyme to execute base excision repair, again increasing its fidelity and strengthening its role in DNA
repair within mitochondria [90]. The crystal structure of the Pol γ complex has provided further insights into
its mechanism and the unique interactions between its subunits. The analysis of a wide number of disease-
causing mutations within the context of this structure has led to a greater understanding of the molecular
changes that these alterations induce [91,92] (reviewed in ref. [93]).
POLG2 or B is a 55 kDa homodimeric accessory subunit required for tight binding of the holoenzyme on

DNA [94]. It is also vital for increasing the processivity of the replication complex and interacts with Twinkle
at the replication fork [95,96]. POLG2 evolved from class IIa aminoacyl tRNA synthases and appears to be less
conserved than its catalytic counterpart, with no orthologues identified in fungi [97]. The binding of POLG2
significantly increases the processivity of the enzyme due to a change in the structure of POLG1, which
increases its DNA interaction ‘footprint’ from 10 to 25 bp [91]. The addition of POLG2 to the complex
decreases the proofreading capacity of the enzyme, which is probably due to a decrease in the ability to switch
the template DNA from the polymerase to the exonuclease active site [88,96].
The polymerase is assisted in the completion of replication by many other components including Twinkle,

the mitochondria helicase and MtSSB (SSBP1), a single-stranded DNA-binding protein. More recently, a much
wider range of proteins have been associated with mtDNA replication and repair, many of which have already
been identified based on their roles in nuclear DNA metabolism. These include the helicases DNA2, PIF1 and
RecQL4, topoisomerases TopImt, TopIIIα, TopIIβ [21–24,98–101] and Fen1, DNA ligase III and RNAse H1
[25,102–106].

Mechanisms of mammalian mtDNA replication
The first studies of mtDNA replication were carried out using electron microscopy, which highlighted many
unique structures within the observed molecules, including double-forked structures with one single-stranded
branch [107–109]. These studies led to the proposal of a strand-displacement model of mtDNA replication
[108,110,111]. This model proposes that replication continues in an asynchronous, unidirectional manner;
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replication proceeds on the H-strand extending from the primer generated in the NCR, while the unreplicated
ssDNA becomes coated with mtSSB. After replication has proceeded two-thirds of the way around the mol-
ecule, then OL becomes exposed, allowing replication to be primed in the reverse direction, again continuing
unidirectionally around the circle to generate a fully duplicated daughter molecule [112].
The use of 2D neutral agarose gel electrophoresis (2D AGE) uncovered a second distinct replication mechan-

ism of mtDNA replication. This technique relies on the fact that DNA can be isolated dependent on its mass and
shape by altering separation conditions [113]. Strikingly, when mtDNA replication intermediates were examined
by this method, many conventional replication bubbles and forks were observed. These structures were resistant
to ssDNA nucleases, suggesting a conventional strand-coupled mechanism of replication [114–117]. Although
such dsDNA molecules had been observed much earlier in electron microscopy (EM) images of rat liver
mtDNA, a strand-coupled mechanism was not pursued [108,109,118,119]. Replication is believed to initiate in a
bidirectional manner from a broad zone termed ori Z; however, OH acts as a strong replication barrier; therefore,
DNA replicases are stalled and unable to pass bidirectionally through this region [114,116].
In addition to conventional strand-coupled replication intermediates, 2D AGE also identified replication

intermediates with significant regions of RNA–DNA hybridisation [79,117]. This lead to the proposal of the
Ribonucleotide Incorporation ThroughOut the Lagging Strand (RITOLS) mechanism of mtDNA replication,
where RNA is bound to the displaced strand during asynchronous replication rather than mtSSB [79]. This
RNA was identified as mtDNA transcripts, which are thought to be laid down when the L-strand is released as
ssDNA during replication and in organello labelling allowed these RNA species to be followed as replication
proceeds [120]. More recent EM studies support this model as it was observed that when conditions were opti-
mised to preserve fragile RNA, no ss mtDNA regions were present [121]. Variations in the types of replication
intermediates were observed across different tissues and under different stresses (e.g. damage or mtDNA deple-
tion), suggesting that different mechanisms may be utilised under various circumstances [122].
However, there is still much controversy and disagreement over these different replication mechanisms, with

recent work showing that mtSSB occupancy is increased between OH and OL on the displaced heavy strand,
favouring the strand-displacement model [123]. While it has been claimed that mtSSB is lost due to proteinase
K treatments used to observe RITOLS intermediates and that R-loops are prevalent in mtDNA but not replica-
tion intermediates, others claim that RNA loss during preparation leads to mtSSB binding [121,123,124].
Although more studies are required to fully unravel the mechanisms of mtDNA replication, it seems likely that
this process consists of a combination of the proposed models.
Although it currently seems unlikely that PrimPol plays a direct role in replicating mitochondrial DNA, as it

is non-essential in mammalian cells, it probably plays roles in maintaining ongoing replication when the repli-
cative complex of Pol γ and Twinkle hits an obstacle. Cells are clearly capable of maintaining replication in the
absence of PrimPol and, notably, the majority of yeast species lack PrimPol orthologues. However, the presence
of this additional primase–polymerase is likely to aid in overcoming replication barriers, thus ensuring timely
completion of replication.

Damage tolerance during mtDNA replication
For many years, it was believed that mitochondria did not have their own DNA repair proteins/pathways as
they were unable to remove cyclobutane pyrimidine dimer (CPD)s after UV damage [125]. Thus, replication
must be able to proceed beyond such damage, which is likely to be perpetuated within the DNA. However,
these original ideas have now been refuted and many new players in the maintenance and repair of mtDNA
are regularly being added to the team of proteins maintaining the ‘genome’ within this organelle. Although a
wide range of repair pathways are now known to be able to remove DNA lesions within mitochondria, this can
be a relatively slow process and, therefore, Pol γ probably requires additional damage tolerance/bypass mechan-
isms to allow timely progression of replication.

Bypass of lesions — overcoming obstacles on DNA
Along with its ability to generate primers, PrimPol is also a template-dependent polymerase with the ability to
bypass some lesions. For example, it has the ability to perform TLS bypass of 8-oxoG lesions, a prevalent
product of oxidative damage but is unable to bypass abasic sites or thymidine glycol lesions unless supplemen-
ted with manganese [28,29]. In addition, PrimPol has the ability to bypass damage caused by UV exposure
and, unlike known mammalian polymerases, PrimPol can bypass distorting 6-4 PP lesions that induce DNA
bending. Although it is not able to directly bypass CPDs in the presence of magnesium, it can extend from this
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lesion when templated with two dA residues, unlike many other polymerases [28]. In addition, PrimPol has
been reported to scrunch the template, realigning the priming strand in order to bypass intolerable DNA
lesions, which seems the more likely mode of bypass given the protein’s small active-site cleft [36,37]. Thus, it
seems likely that PrimPol may also play a role in the TLS bypass of these types of damage within the mitochon-
drial genome (Figure 2).
UV damage has been shown to accumulate in mitochondrial DNA, particularly in skin cells that are regularly

exposed to low levels of UV irradiation (reviewed in ref. [126]). These lesions are commonly repaired by the
nucleotide excision repair pathway [127]. However, this pathway has not been identified within the mitochon-
dria; therefore, such lesions must be repaired by other pathways such as base excision repair (BER), mismatch
repair (MMR), non homologous end-joining (NHEJ) or a homologous recombination and may even persist
within the DNA. To prevent the catastrophic formation of double-strand breaks during DNA replication, the
organelle must have a method to bypass such lesions. Studies have shown that Pol γ has the ability to bypass
CPD lesions in vitro, albeit at a level much lower than that of undamaged DNA [128]. Although it often incorpo-
rates the incorrect base at such sites, it is still able to excise these mutations using its exonuclease domain.
However, such methods of bypass either by PrimPol or Pol γ are likely to significantly delay the completion of
replication. Although the mitochondria have multiple DNA copies, unperturbed replication of the full genome is
thought to take up to 1 h [110]; therefore, only a small amount of damage is likely to have a drastic effect on the
organelle’s functionality as a whole. Indeed, although low levels of UV or oxidative damage do not affect the
mitochondrial DNA copy number, they do cause changes in the mechanism of DNA replication [129]. It has
been shown that after such UV damage, replication switches from a RITOLS mechanism to a strand-coupled

Figure 2. Potential functions of PrimPol during mtDNA replication.

Highlighted here are ways in which PrimPol may play key roles in allowing the maintenance of mtDNA replication in many

fork-stalling situations. (A) After Pol γ is stalled by a lesion (yellow star), PrimPol is capable of repriming synthesis downstream

to allow replication to proceed while the slower process of replication across the lesion is dealt with by Pol γ itself or another

specialised TLS polymerase. Alternatively, PrimPol may act as a TLS polymerase that directly bypasses the lesion. (B) PrimPol

may play a role in repriming synthesis when the replication fork is stalled by DNA secondary structures, e.g. G4s. By priming

after the structure, it allows replication to continue downstream, while specialised helicases are recruited to facilitate synthesis

through the structure. (C) Nucleoside analogues (cyan star), incorporated into the newly synthesised strand, prevent further

elongation and must be removed by the exonuclease of Pol γ, which is a slow process. PrimPol may reprime downstream from

CTNAs to allow replication to continue in a timely fashion, while the process of removing these is completed. In each case, the

second DNA strand is shown as dsDNA for simplicity; however, this could be coated with mtSSB or RNA transcripts,

depending on the mode of replication.
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mechanism, probably due to its ability to complete replication more rapidly and allow the mtDNA copy number
to be maintained in the presence of damage [129]. It is believed that the RITOLS mechanism may represent a
high-fidelity method of genome replication, while the strand-coupled mechanism may be more error-prone but
allow replication to be completed. Notably, tissues with a higher oxidative stress load use a higher degree of
strand-coupled replication [122,129]. However, for strand-coupled replication to be successful, particularly in the
presence of DNA damage, the replication machinery must be able to generate multiple new primers to allow the
continuation of the replication fork.
PrimPol can also reprime DNA synthesis after lesions and it is this function that is likely to be vital in allow-

ing replication to proceed after DNA stalling. Allowing the replication fork to continue beyond such lesions
would significantly decrease the completion time and thus allow processes that take a longer time, such as
repair of the lesion itself, to take place in a post-replicative fashion. PrimPol is a poorly processive polymerase,
only capable of incorporating 1–4 bases before falling off the DNA, suggesting it may be required to produce
short primers for the more accurate and exonuclease-containing polymerase, Pol γ, to take over and complete
mtDNA replication. PrimPol interacts with RPA, mtSSB and PolDIP2, which modulate its synthesis activities
in vitro [35,42]. Although PrimPol’s polymerase activity is stimulated by Twinkle [43], mtDNA replication
studies showed that PrimPol is unable to enhance replication after Pol γ stalling at oxidative lesions [43].
Therefore, although it has the capability to perform TLS in vitro, the jury is still out on whether or not
PrimPol actually uses such a mechanism to restart replication in vivo.
In addition, POLRMT may also play a key role in repriming DNA replication within the mitochondrion.

Although POLRMT has been demonstrated to initiate replication at three defined sites in the genome, it is also
capable of generating RNA primers on ssDNA [49,130,131]. In contrast with PrimPol, it generates RNA
primers of ∼25–75 nucleotides long [49,130], although these have been found to be as short as 9–18 nt in yeast
in the presence of the transcription factor Mtf1 [131]. These differences suggest that both may play key roles in
repriming but under different circumstances.

More than one polymerase on the block
Unlike mammalian mitochondria, which for many years were thought to contain only a single DNA polymer-
ase, many additional polymerases have been found to also reside within yeast mitochondria. Like mammalian
mtDNA replication, the main replicative polymerase is a Pol γ homologue, Mip1, that consists only of the large
catalytic subunit, with no PolG2 homologue identified [132,133]. In addition, Pol α has also been identified
within the mitochondria in Saccharomyces cerevisiae [134]. Its dual localisation was confirmed by immuno-
fluorescent labelling and although its function within the organelle is yet to be elucidated, it is likely to have a
role in repair and gap-filling as it is unable to rescue cells lacking Mip1 [134]. In another S. cerevisiae study,
Pol ζ, consisting of Rev3, Rev7 and Rev1, was also found to localise within the mitochondria and in the
nucleus [135]. While depletion of Rev3 or Rev7 had no effect on mitochondrial mutation levels, loss of Rev1
led to a decrease in the frequency of spontaneous mutations within the mtDNA [135]. Further studies have
shown that, although loss of Pol ζ causes a decrease in spontaneous and UV-induced frame-shift mutations, it
also causes a large increase in point mutations after UV-C damage, suggesting that an alternative, more muta-
genic, pathway is used in its absence [136]. Interestingly, overexpression of Pol ζ is capable of rescuing patho-
logical Mip1 mutants, which cause an increase in mutations [137], while overexpression of the protein in the
nucleus causes an increase in mutations [138]. In addition, a proportion of Pol η has also been identified
within the mitochondria of budding yeast [139]. Like Pol ζ, it was also found that loss of Pol η causes an
increase in the number of mutations produced after UV-C damage within the mitochondrial DNA, confirming
an important role in the maintenance of DNA integrity. Other organisms have also been found to have a much
wider range of mtDNA polymerases (Figure 1), with trypanosomes having a large number of Pol β- and
Pol κ-like polymerases [6,140].

New players join the mammalian mitochondria polymerase team
A recent study using an mtDNA-specific damaging agent has provided clear evidence for additional poly-
merases within mammalian mitochondria. Pol θ is a member of the A family of DNA polymerases but, unlike
many of the other members, it is a highly promiscuous polymerase that exhibits a wide range of activities on a
broad variety of substrates. Indeed, it appears to have roles in interstrand cross-link repair, BER,
microhomology-mediated end-joining, TLS, as well as having lyase activity [141–143] (reviewed in ref. [144]).
Although it has no mitochondrial targeting sequence, it is recruited to the organelle after oxidative damage
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[145]. Strikingly, loss of Pol θ leads to a decrease in cellular oxygen consumption and mitochondrial membrane
potential, indicative of decreased oxidative phosphorylation, while mtDNA actually shows a decrease in muta-
tions, suggesting that other types of damage may abound [145]. This is not unique, as loss of Pol ζ in the
nucleus has a similar effect on mutation levels [146,147]. Although these TLS polymerases are useful for main-
taining replication across lesions, thus preventing the formation of possible DSBs (double strand break) as rep-
lication and the cell cycle progresses, their ability to perform TLS comes with a high mutagenic cost. Therefore,
the cell must balance such consequences to ensure that a functional copy of the genome is passed on to daugh-
ter cells. In the mitochondrion, mutations represent less of a risk than in the nucleus, as each gene is available
in multiple copies, thus any mutated copy represents a much smaller fraction of the available product pool.
Although mutations have been shown to cause a range of mitochondrial diseases, some with catastrophic con-
sequences for cellular survival, these mutations must cross a threshold level before their effects are observed.
The mitochondrial DNA copy number appears to be relatively flexible and it has been reported, in many
model organisms, that copy number varies widely across tissues and with age [148,149]. Interestingly, the
mtDNA copy number has been found to vary widely across different cancers, probably due to mutations in
many regulatory genes and, in many cases, mtDNA copy number has been linked to prognostic outcomes
[150–152]. In addition, it has been reported that high levels of random mutations are tolerated by cells. For
example, studies on mice lacking the exonuclease domain of Pol γ showed premature ageing. However, when
mutation levels were analysed in the heterozygotes, they were shown to be almost as high as homozygote litter
mates but showed no premature ageing phenotypes [153].
In addition, extension of work initially carried out in yeast has shown that a specific isoform of Rev3 is also

found within mammalian mitochondria, yet unlike in yeast, the other components that form Pol ζ have not
been identified [154]. Loss of this protein causes mitochondrial dysfunction and an increase in DNA damage
after UV-C irradiation [154].
It is now becoming clear that, like nuclear DNA maintenance, mitochondria also utilise a broad range of

repair and tolerance mechanisms to overcome DNA damage, which may occur spontaneously or arise due to
many different environmental issues. The presence of several TLS polymerases within the organelle suggests
that mitochondria also utilise such specialised polymerases to overcome DNA lesions. As well as direct exten-
sion of the replication fork, such polymerases are also likely to be vital for post-replicative repair across lesions.
In many cases where the fork is stalled, replication may be reprimed beyond a lesion by PrimPol or POLRMT,
allowing replication to proceed. However, a polymerase capable of bypassing the lesion is then required to fill
in the gap left behind, thus allowing repair of the lesion that must be done on dsDNA to prevent the formation
of double-strand breaks, which are highly deleterious for the cell.

DNA structural barriers in mitochondria — bypass of G4 quadruplex structures
G4 quadruplexes (G4s) are stable DNA secondary structures formed through the planar stacking of quartets of
Hoogsteen-bonded guanine bases. They are thought to have a wide range of roles within cells including replica-
tion initiation, telomere maintenance, epigenetic instability, regulated recombination in the immune system and
transcription regulation [155]. G4s form in both DNA and RNA and can be either intramolecular, within one
DNA strand, or intermolecular, between two or more DNA/RNA strands [156]. Along with the well-studied
RNA/DNA quadruplex found in the NCR, in silico studies have identified many other potential G4-forming
sequences within mtDNA [157,158]. A total of 80–90 potential quadruplex-forming sequences have been
found throughout the human mitochondrial genome, strongly biased towards the heavy strand of DNA, which
has a significantly high content of guanine nucleotides. Yeast mtDNA contains ∼0.373 potential quadruplex-
forming sequences per 1000 base pairs, which is an order of magnitude larger than in nuclear DNA (∼0.034–
0.067) [159,160]. Interestingly, some studies suggest that, along with other helix-distorting and intrinsically
curved regions of DNA, G4s may be a significant cause of DNA instability within the mitochondrial genome
[161]. Dong et al. [158] have identified many quadruplexes with two or three consecutive guanines within the
mitochondrial genome that are associated with sites of common mitochondrial deletions. They proposed that
such structures may induce genome deletions in many possible ways, including the stalling of replication,
causing DNA breaks or extensive tracts of vulnerable ssDNA or through aberrant DNA repair mechanisms
[158]. In addition, potential quadruplex-forming sequences are found close to sites of common pathological
deletions and such sequences are inefficiently unwound by the mitochondrial helicase, Twinkle, suggesting that
they may cause a significant impediment to progressing replication forks [162]. In addition, many other DNA
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structures may also persist within mtDNA, which may slow or stall the replicative polymerase, such as triplex
or Z DNA, intrinsically bent structures or hairpin loops, such as the loop shown to form at OL [161,163].
It has recently been demonstrated that PrimPol is crucial for the bypass of G4s in the nucleus of vertebrate

cells [164]. Although PrimPol is unable to replicate directly through these structures, it is capable of repriming
directly after G4s in a process termed ‘close-coupled repriming’ that enables replication to be restarted almost
immediately downstream from G4s (Figure 2). In the absence of PrimPol, a significant amount of uncoupling
of the replication fork was observed in cells as large tracts of late-replicated DNA in the region of the quadru-
plex on the leading strand, which was associated with the loss of epigenetic histone marks [164]. This recent
discovery has led to the speculation that PrimPol is likely to play a similar role in the replication of such struc-
tures within the mitochondrial genome. Although Twinkle shows poor activity when confronted with G4 struc-
tures [162], many helicases have been found to be involved in the bypass of such structures in the nucleus, one
of which (Pif1) is also localised to the mitochondria [21,165].

Tolerance of chain-terminating nucleoside analogues
Another situation where PrimPol has recently been shown to play a vital role is in the maintenance of replica-
tion in the presence of chain-terminating nucleoside analogues (CTNAs), such as acyclovir and abacavir. Cells
lacking PrimPol showed increased sensitivity to such drugs, while PrimPol was found to be able to incorporate
many of these nucleotide analogues and also perform close-coupled repriming downstream from such lesions
in vitro [40,166]. CTNAs typically lack the essential 30 hydroxyl moiety required for phosphodiester bond for-
mation and therefore prevent ongoing replication when incorporated into DNA by terminating strand exten-
sion. They are commonly used to control viral infections (e.g HIV), as they are readily incorporated into DNA
by reverse transcriptase, significantly slowing viral replication processes. However, they do have a range of toxic
side effects caused by mitochondrial toxicity (reviewed in refs [167–169]), with long-term use of azidothymid-
ine (AZT) causing a decrease in mitochondrial DNA in skeletal muscle and cumulative mitochondrial myop-
athy [170,171]. More precisely, these effects have been attributed to the incorporation of these nucleoside
analogues by Pol γ (reviewed in ref. [172]). Pol γ inserts nucleoside analogues with varying ease, some incorpo-
rated at concentrations similar to standard nucleotides, while others require ∼2–5-fold higher concentrations to
be efficiently incorporated [173–175]. All analogues share the ability to inhibit Pol γ-mediated replication
in vitro by preventing any further synthesis and therefore they must be rapidly removed; otherwise, ongoing
replication is inhibited [174]. The attempted removal of CTNAs from the elongating DNA strand is likely to be
first tackled by the exonuclease domain of Pol γ, whose role it is to check newly replicated DNA for accuracy
and quickly remove any incorrectly incorporated bases to prevent mutations from being generated [88]. The
exonuclease domain of Pol γ increases its fidelity by improving nucleotide selection by a factor of ∼200 [88].
Notably, removal of nucleoside analogues by this exonuclease is a slow process. For example, the ddC analogue
zalcitidine has a half-life in DNA of ∼2.4 h due to its stronger binding affinity, compared with standard nucleo-
tides, for the polymerisation domain [176]. In addition, other analogues (e.g. AZT) have also been shown to
inhibit the exonucleolytic activity of Pol γ, causing a decrease in fidelity [174].
Given this propensity for incorporation of CTNAs into replicating mtDNA, it seems likely that PrimPol also

plays a key role in repriming replication after the incorporation of these nucleoside analogues by Pol γ
(Figure 2). PrimPol-deficient cells are more sensitive to the presence of these analogues, and this sensitivity can
be complemented by the addition of PrimPol, but not by a primase-deficient mutant of this enzyme [40], indi-
cating that repriming is essential for this process. In addition, PrimPol is capable of repriming downstream
from incorporated nucleoside analogues in vitro, further supporting this proposed role in replication restart.
Interestingly, PrimPol is itself capable of incorporating a number of the FDA-approved CTNAs into DNA,
albeit less efficiently than natural nucleotides, with a distinct discrimination profile compared with Pol γ [166].
Thus, PrimPol may also create its own problems, but its low processivity [34] is likely to limit such potential
toxicity in vivo.

Conclusions
Despite its small size, mitochondrial DNA can represent ∼1% of the total DNA in some cells due to its poly-
ploid nature [17]. However, our understanding of DNA replication processes within this organelle still trails
well behind that of nuclear genome duplication. Mitochondrial DNA has its own specialised replicative poly-
merase and mechanisms that vary from those observed in the nucleus, although some controversy remains
within the field over the abundance and validity of the different proposed replication models. However, we are
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beginning to uncover that mtDNA replication and repair mechanisms may, in fact, be more similar to those in
the nucleus than was initially thought, as many proteins identified within the nucleus are now also being found
to have additional roles in mtDNA replication. Clearly, there is much more to understand about the replication
of this small, but far from insignificant, molecule of DNA.
PrimPol is likely to play a similar role within the mitochondrion as it does in the nucleus, maintaining the

progression of the replication fork after replisome stalling. Emerging data suggest that PrimPol’s key role is
likely to be in repriming replication restart after a fork-stalling lesion or DNA structure [40,164]. In this review,
we propose that it is highly likely that PrimPol plays the same roles in mitochondria by repriming DNA repli-
cation to allow replication to be completed in an efficient and timely manner (Figure 2).
However, mitochondrial DNA organisation varies significantly from the compaction of nuclear DNA; there-

fore, the replication mechanisms and proteins required for its duplication are adapted for these different envir-
onments, suggesting that PrimPol must be a highly flexible protein, which is capable of adapting its functions
depending on its partners and the problems it encounters. It seems likely that its main role is to reprime the
initiation of DNA synthesis after Pol γ is stalled by DNA damage, secondary structures or chain-terminating
events. This allows replication to proceed, leaving behind the cause of the stalling event to be processed and
corrected in a post-replicative fashion. However, its ability to perform TLS opposite template lesions, such as
8-oxoG, may also be significant [28,29]. Complete replication of a mitochondrial DNA molecule is thought to
take ∼1 h [110]; thus, although each cell contains multiple copies of the mitochondrial genome, it is essential
that each round of replication is completed in a timely manner to prevent the accumulation of multiple stalled
and/or collapsed replication forks. Indeed, in the absence of PrimPol, the mtDNA copy number is considerably
increased, suggesting that more copies are required to fully maintain organelle functionality.
Although we have primarily discussed the possible roles of PrimPol during mitochondrial genome replica-

tion, it is possible that it may also play additional roles in the repair of damaged DNA in the absence of
ongoing replication. For example, almost all DNA repair pathways utilise polymerases to fill in gaps generated
by nucleolytic repair processes, such as base/nucleotide excision and resection. Notably, in this regard, distinct
primase–polymerases have evolved to play such bespoke roles in various DNA repair processes in prokaryotes,
such as NHEJ [31,32]. We still have much more to learn about the roles and regulation of PrimPol in both the
mitochondria and the nucleus, and further research is required to better understand the functions this fascinat-
ing enzyme fulfils within the cell [177]. A range of PrimPol mutations have been found in cancer cells and
other conditions suggesting possible connections to human disease, including mitopathies, although these
pathological associations remain to be established [178].
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