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Mitochondrial disorders are a group of genetic diseases affecting the energy-converting
process of oxidative phosphorylation. The extreme variability of symptoms, organ involve-
ment, and clinical course represent a challenge to the development of effective thera-
peutic interventions. However, new possibilities have recently been emerging from
studies in model organisms and awaiting verification in humans. I will discuss here the
most promising experimental approaches and the challenges we face to translate them
into the clinics. The current clinical trials will also be briefly reviewed.

Introduction
The main function of mitochondria is to convert the energy derived from nutrients into heat and
ATP, a high-energy molecule exploited by the cell biochemical machineries. This process is carried
out by the respiratory chain (RC) through oxidative phosphorylation (OxPhos) [1]. Respiration is per-
formed by four multiheteromeric RC complexes, cI–IV, that transfer electrons from the NADH and
FADH2, generated by intermediate metabolism, to molecular oxygen. Mammalian mitochondria have
their own multicopy DNA (mitochondrial DNA, mtDNA), which encodes 13 subunits of the RC
complexes I, III, IV, and V (complex II is only composed by 4 nucleus-encoded subunits), 22 transfer
RNA, and 2 ribosomal RNA.
Mitochondria are double-membrane organelles, with the inner membrane folded into cristae where

the respiratory complexes are housed. The electron flow is coupled to the translocation of protons
across the inner mitochondrial membrane generating an electrochemical gradient, which is then
exploited by RC complex V (cV or ATP synthase) to carry out the condensation of ADP and Pi into
ATP [2].
Beside mtDNA-encoded proteins, the vast majority of the ∼1500 polypeptides forming the mito-

chondrial proteome is encoded by nuclear genes, which are translated in the cytosol into proteins and
finally imported into the organelles. These proteins are required for a massive number of biological
processes, such as replication, transcription, and translation of the mtDNA, formation and assembly
of the RC complexes, fission–fusion of the mitochondrial network, signaling, and execution pathways
(e.g. ROS production and apoptosis) [1].
Primary mitochondrial diseases can be attributed to mutations in both mitochondrial and nuclear

genomes [3]. MtDNA mutations include homo- or heteroplasmic point mutations and heteroplasmic
large-scale rearrangements. Examples of classical mtDNA-related diseases are mitochondrial encepha-
lomyopathy with lactic acidosis and stroke-like episodes (MELAS), myoclonic epilepsy with ragged red
fibers, neurogenic weakness, ataxia, and retinitis pigmentosa (NARP), Leigh syndrome (LS), Leber’s
hereditary optic neuropathy (LHON), sporadic progressive external ophthalmoplegia, Kearns–Sayre
syndrome, and Pearson’s syndrome [4].
Nuclear DNA-related mutations have been found in genes directly or indirectly related to the RC,

including, among others, (i) proteins involved in mtDNA maintenance and/or replication machinery;
(ii) structural subunits of the RC complexes; (iii) assembly factors of the respiratory complexes; and
(iv) components of the translation apparatus [5].
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Pathways to therapy
Currently, there is no treatment for mitochondrial diseases [6]. In the last few years, however, several potential
therapeutic approaches have been proposed, and for some of them proof of efficacy has been provided in
animal models, and testing their efficacy in humans is much awaited. These can be divided into two categories
(Table 1): (i) those acting on common pathways and thus, in principle, applicable to several disorders and (ii)
those tailored to a specific disease. The first category includes the stimulation of mitochondrial biogenesis, the
improvement of respiration efficiency by shaping the cristae, the bypass OxPhos defects by using xenogenes
[e.g. alternative oxidases (AOX) bypassing defects in cIII and cIV], and the use of antioxidants and other com-
pounds to scavenge toxic metabolites. The second group includes Adeno-associated viral (AAV)-mediated gene
therapy approaches aimed at re-expressing the wild-type gene or other therapeutic genes (e.g. endonucleases to
shift the heteroplasmy) in targeted tissues. Here, I will briefly review these strategies (Table 2; for a more
detailed review see ref. [7]). I will also summarize recent clinical trials, and the difficulties and challenges of
translating a proof-of-principle experiment into clinics. Mitochondrial replacement therapy is discussed else-
where [8].

Non-tailored strategies
Nucleotide metabolism
Supplementation of deoxyribonucleosides has been used quite successfully in mouse models of mtDNA
instability syndromes. This approach was highly effective in improving the biochemical and/or clinical defect in
vivo in the Tymp−/− mouse [9], a model of mitochondrial neuro-gastro-intestinal encephalomyopathy
(MNGIE), and in the Tk2−/− mouse, characterized by early-onset fatal encephalomyopathy [10]. Tymp encodes
the cytosolic thymidine phosphorylase, which catalyzes the first step of thymidine and deoxyuridine catabolism;
Tk2 encodes mitochondrial thymidine kinase, which phosphorylates thymidine and deoxycytidine pyrimidine
nucleosides to generate deoxythymidine monophosphate (dTMP) and deoxycytidine monophosphate (dCMP).
Mutations in either enzymes lead to nucleotide imbalance and mtDNA instability, which can be rescued by the
supplementation of deoxycytidine or tetrahydrouridine [9], an inhibitor of cytidine deaminase, in the case of
the Tymp−/− mouse model, and by dCMP + dTMP in the case of the Tk2−/− mouse model [10].

Stimulation of mitochondrial biogenesis
Bioenergetic defects and reduced ATP synthesis are key features of mitochondrial diseases and increasing mito-
chondrial mass or activity can thus be beneficial. The transcriptional co-activator peroxisome proliferator-
activated receptor-γ1 (PGC1) α is the master regulator of mitochondrial biogenesis. PGC1α interacts with and
increases the activity of several transcription factors, including the nuclear respiratory factors (NRF1 and 2),
which, in turn, control the expression of OxPhos-related genes, and the peroxisomal proliferator activator
receptors (PPARs) α, β, and γ, which control the expression of genes related to fatty acids oxidation [11]. In
addition, PGC1α is activated by either deacetylation by Sirtuin 1 (Sirt1) or phosphorylation by
AMP-dependent kinase (AMPK), both of which can be modulated pharmacologically [12]. For instance,
AMPK is activated by AICAR, an adenosine monophosphate analog, whereas Sirt1 is activated by increasing
cellular levels of NAD+, a co-substrate in the deacetylation reaction. This latter effect can be achieved by (i)
providing NAD+ precursors and (ii) inhibiting NAD+ consuming enzymes such as the poly(ADP) ribosyl-
polymerase 1. The administration of AICAR, nicotinamide riboside (NR), a NAD+ precursor, or PARP inhibi-
tors was able to robustly induce mitochondrial biogenesis and ameliorate the clinical phenotype of two mouse
models of mitochondrial myopathy [13–15]. NR seems to be particularly attractive for testing in patients,
because it effectively enhances Sirt1 activity and mitochondrial biogenesis but lacks the unwanted effects of
other components of vitamin B3. Nicotinic acid, for instance, although effectively increasing mitochondrial bio-
genesis, induces flushing by activation of GPR109A receptor, which is not stimulated by NR [16], while nico-
tinamide has been reported as an inhibitor of histone deacetylases, including sirtuins [17].
Finally, bezafibrate, a pan-PPAR agonist, has also been used to stimulate PGC1α leading to a remarkable

clinical amelioration of a mouse model of severe cIV deficiency [18]. These results, however, were not con-
firmed in later studies on different mouse models [14,19], although the reasons for these discrepancies are
unclear.
Overall, there is accumulating evidence in mouse models that boosting mitochondrial biogenesis can be an

effective treatment for many mitochondrial diseases, independently of their genetic cause.
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Improving mitochondrial shape
Opa1 is a dynamin-like GTPase of the inner membrane playing a central role in cristae morphology. In
humans, eight isoforms are generated by alternative splicing and processed by proteolytic cleavage by the two
iAAA proteases, YME1 and OMA1, to form long (L-) and short (S-) forms, respectively. Increasing the expres-
sion of L-Opa1 improves respiration efficiency by increasing supercomplexes assembly [20] and protects in vivo
from many insults such as ischemia–reperfusion, denervation-induced muscle atrophy, and OxPhos deficiency
[21,22]. Accordingly, the up-regulation of L-Opa1 by deleting Oma1 delays neuronal loss and prolongs lifespan
of prohibitin 2 knockout mouse [23]. Interestingly, a significant correction of mitochondrial ultrastructure in
the same pathological conditions, and independently of the genetic cause, has been obtained by using
Szeto-Schiller (SS) peptides [24]. These are tripeptides able to penetrate cells and to accumulate in mitochon-
dria, where they bind cardiolipin, a lipidic component of the inner mitochondrial membrane with an important
role in regulating the RC activity and in shaping mitochondrial cristae. Although the mechanism of SS peptides
is poorly understood, cardiolipin modulates Opa1 activity and oligomerization [25], and they may actually
modulate Opa1.

Bypassing RC defects
Xenogenes, single-peptide enzymes derived from yeast or low eukaryotes, have been used to bypass the block of
the RC due to defects in specific complexes in cellular and Drosophila models. The rationale for using these
non-proton-pumping enzymes is that they should re-establish the electron flow, thus reducing the accumulation
of reduced intermediates and ROS production, and increase ATP production by allowing proton pumping at
the non-affected complexes. The NADH reductase (Ndi1), which in the yeast Saccharomyces cerevisiae transfers
electrons from NADH to coenzyme Q (CoQ), has been used to bypass cI defects [26,27]. Similarly, AOX,
which in various organisms transfers electrons from CoQ to molecular oxygen, has been used to bypass cIII
and IV defects [28,29]. A transgenic mouse overexpressing AOX has been produced and did not show any
gross abnormality [30], but the possibility to use AOX to bypass OxPhos defects in vivo in mammals has not
yet been demonstrated.

Disease-tailored strategies
AAV vectors are currently the most widely used vectors for gene therapy in humans because of several advan-
tages, including the fact that they remain episomic, thus reducing the risk of insertional mutagenesis [31] and
that an ever-expanding number of natural and engineered serotypes targeting different tissues has been
described [32]. Integration of natural adeno-associated viruses into oncogenes, such as cyclin A2, and telomer-
ase reverse transcriptase, has recently been reported and associated with hepatocellular carcinomas, although
no such association has been so far reported for recombinant AAV vectors [33]. AAV’s main limitations are

Table 1 Overview of the therapeutic strategies for primary mitochondrial diseases

Advantages Disadvantages Examples

General
strategies

• Wide applicability

• Potentially cost-effective

• Address common
pathomechanisms

• Off-target effects • Activation of mitochondrial biogenesis

• Regulating execution pathways (apoptosis,
autophagy, and fission/fusion)

• Shaping mitochondrial cristae

• Bypass of RC defects by using xenogenes

• Use of dNTPs

Tailored
strategies

• Targeted for a single
disease

• Potentially highly effective

• Limited to a single/few
conditions

• Expensive

• AAV-mediated gene replacement

• Selective elimination of mutant mtDNA by ZNF
or TALE nucleases
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related to their limited cloning capacity (no more than 4.7 kb should be included between ITRs), and the diffi-
culty to target more tissues at the same time, which is a critical point for multisystem diseases (such as, in
many cases, mitochondrial diseases).
Therapies with AAVs can be aimed at expressing either the wild-type form of mutated genes or other thera-

peutic genes (e.g. xenogenes).

Gene replacement therapies
Hepatotropic AAV2/8 serotype was successfully used to express the wild-type form of mitochondrial sulfide
di-oxygenase Ethe1 in the liver of Ethe1−/− mice, a model of ethylmalonic encephalopathy (EE), a highly severe
mitochondrial disease due to impaired disposal of toxic hydrogen sulfide (H2S) and a poison for cytochrome c
oxidase [34]. AAV2/8-Ethe1 fully rescued enzyme activity, leading to efficient clearance of H2S from the blood-
stream with a significant recovery of the profound cIV deficiency in the tissues and a striking prolongation of
the lifespan [34]. The present study demonstrated that the selective re-expression of the missing gene into the
liver was sufficient to induce a significant amelioration of the clinical phenotype in the mouse model, thus
paving the way for using liver transplant for EE. The first child affected by EE was transplanted in Rome, Italy
[35]. Eight months after the liver transplant, spectacular neurological improvement and achievements in psy-
chomotor development were observed, accompanied by a remarkable amelioration of biochemical
abnormalities.
Similarly, AAV2/8 has been used to treat the Tymp−/− mouse model of the MNGIE disease [36], suggesting

that gene therapy or liver transplant can be valuable options also for this disorder. An intravenous injection of
AAV2/8 particles expressing human wild-type TYMP normalized dCTP and dTTP levels in plasma and tissues
for up to 8 months of age. Finally, AAV2/8 was also successfully used to correct the liver-specific mtDNA
depletion and to prevent ketogenic diet-induced cirrhosis in MPV17−/− mice [37].
Although the AAV-based therapies summarized above were very effective in mice, extremely high costs for

the production of the viral stocks and the rarity of the diseases prevented so far their application to the
humans.

Shifting heteroplasmy
Mitochondrially targeted restriction endonucleases have been used to shift heteroplasmy levels in cell lines with
mutations in mtDNA and heteroplasmic mice [38,39]. This approach can, however, be used only when a suit-
able restriction site is introduced by the mutation, as in the case of the NARP mutation, which creates a SmaI
restriction site. However, the introduction of TALE and zinc finger nucleases (TALEN and ZFN) allowed to
bypass this limitation by addressing an unspecific restriction enzyme (FokI) to specific sites in the genome
through the assembly of appropriate ZFN or TALE modules [40,41]. The main limitation of this approaches is
that they both require quite large constructs not easily fitted into AAV vectors.

From bench to bedside
Overview on the clinical trials
Vitamins and food supplements (including CoQ, vitamins A and E, and lipoic acid) are normally used as a
supportive therapy for mitochondrial disease [6], but no one can modify the disease course. Intrinsic difficul-
ties, including the small cohorts of homogeneous patients available, the limited amount of data on the natural
history of the diseases, and poor predictability of the outcome due to high variability, prevent solid trial design.
However, several clinical trials, either open-label or randomized double-blind, are currently underway or have
been recently completed (Table 3) [42], but the outcome is often unclear because the results have never been
reported. The majority of the trials are focused on the use of antioxidants, especially on patients affected by
LHON and MELAS, which offer rather big cohorts. For instance, EPI-743, a para-benzoquinone analog, is
being tested on different types of mitochondrial diseases, including LHON and LS, while a trial on Pearson’s
disease has been terminated for unclear reasons. KH176, a derivative of the antioxidant Trolox, is being tested
on MELAS patients. RTA408, a triterpenoid compound increasing antioxidant defenses by activating the
nuclear factor erythroid 2-related factor 2 (Nrf2), is being tested on myopathic patients. Notably, in all these
cases no preclinical data on animal models of mitochondrial disease have been collected to support the trial.
CoQ10 and idebenone, a quinone analog of CoQ10, are among the very few cases, in which rather extensive
studies have been carried out in patients so far. Idebenone was shown to ameliorate the rate of recovery in
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LHON patients with discordant visual acuity, especially when treated early in the disease course [43], and has
been recently approved by EU for the treatment of this disease. Contrariwise, CoQ10, which is effective in some
patients with the rare congenital CoQ10 deficiency, was shown to have little effect on other mitochondrial dis-
eases [44].

Table 2 Experimental therapies for mitochondrial diseases

Targeted pathway Compounds References

Nucleotide metabolism • dCMP or tetrahydrouridine (inhibitor of cytidine deaminase) [9]
• dCMP+ dTMP [10]

PGC1α-dependent mitochondrial biogenesis • AICAR (via AMPK) [14]
• Bezafibrate (via PPARs) [18]
• NR (via Sirt1) or PARP inhibitors [13]

Mitochondrial shaping • Increasing L-Opa1 [21]
• Inhibition of Oma1 [23]
• SS peptides [24]

Bypassing OxPhos defects • Ndi1 (bypass for cI defects) [26,27]
• AOX (bypass for cIII/cIV defects) [28,29]

Shifting heteroplasmy • Restriction endonucleases [38,39]
• ZNF nucleases [40]
• TALE nucleases [41]

Elimination of toxic compounds • AAV-mediated gene therapy [34,36]
• Liver transplant [35]

Table 3 Examples of the clinical trials currently open or completed for mitochondrial diseases

Treatment Disease Trial number Design
Target of
intervention Outcome

Currently open

EPI-743 Metabolism or
mitochondrial
disorders

NCT01642056 Randomized,
double-blind

ROS Ongoing

Bezafibrate Mitochondrial
myopathy

NCT02398201 Open-label Mitochondrial
biogenesis

Ongoing

RTA 408 Mitochondrial
myopathy

NCT02255422 Randomized,
double- blind

ROS/NRF2 Ongoing

KH176 MELAS NCT02544217 Randomized,
double-blind

ROS Ongoing

scAAV2-ND4
LHON NCT02161380 Open-label ND4 Ongoing

Completed

Ketones MELAS NCT01252979 Open-label Heteroplasmy N/A

L-Arginine MELAS NCT01603446 Open-label Nitric oxide Improvement in aerobic capacity
and muscle metabolism

Idebenone LHON NCT00747487 Randomized,
double-blind

ROS No recovery in visual acuity, but
improvements in secondary end
points (e.g. changes in visual acuity
of the best eye at baseline)

Coenzyme
Q10

Mitochondrial
disease

NCT00432744 Randomized,
double-blind

ROS N/A

MTP-131 Mitochondrial
myopathy

NCT02367014 Randomized,
double-blind

Cardiolipin N/A
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Other compounds, with different mechanisms of action under clinical trials, include bezafibrate, MTP-131,
ketones, and L-arginine [42]. In spite of the contradictory results in mice, a clinical trial with bezafibrate is
recruiting patients. This was prompted by an increase in mitochondrial content observed in the skeletal muscle
of bezafibrate-treated patients with carnitine palmitoyl transferase II defects [45]. A clinical trial with MTP-131
on patients with mitochondrial myopathies has been completed, but the results are not available yet. Ketones
were shown to shift heteroplasmy in cellular models carrying mutations in mtDNA [46] and were tested on
MELAS patients, but also in this case no results were reported. L-Arginine, a donor of nitric oxide thus acting
on vessels tone, induced an improvement in aerobic capacity and muscle metabolism in MELAS patients [47].
Two clinical trials are being carried out using AAV vectors to allotopically express mitochondrial ND4 in

LHON patients. However, it is still highly debated if allotopically expressed proteins are really imported into
the mitochondria and integrated into functionally active complexes [48].

Conclusions
Mitochondrial medicine is experiencing a period of vibrant development. Several strategies have been proposed
and some proved to be efficient in cell or animal models, but their application into the clinics is still challen-
ging. Although the need for high-quality clinical trials has been repeatedly invoked [49], the transfer of preclin-
ical studies into clinics is far from being a linear and easy process. More extensive collaborations between basic
research laboratories, pharmacology experts, and industrial partners will be needed in order to tackle these pro-
blems and move the field into a new era.
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