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Abstract
Two opposing enzyme classes regulate fundamental elements of genome maintenance, gene regulation and
metabolism, either through addition of an acetyl moiety by histone acetyltransferases (HATs) or its removal
by histone de-acetyltransferases (HDAC), and are exciting targets for drug development. Importantly,
dysfunctional acetylation has been implicated in numerous diseases, including cancer. Within the HAT
superfamily the MYST family holds particular interest, as its members are directly involved in the DNA damage
response and repair pathways and crucially, several members have been shown to be down-regulated in
common cancers (such as breast and prostate). In the present study we focus on the development of
lysine (K) acetyltransferase inhibitors (KATi) targeting the MYST family member Tip60 (Kat5), an essential
protein, designed or discovered through screening libraries. Importantly, Tip60 has been demonstrated to be
significantly down-regulated in many cancers which urgently require new treatment options. We highlight
current and future efforts employing these KATi as cancer treatments and their ability to synergize and
enhance current cancer treatments. We investigate the different methods of KATi production or discovery,
their mechanisms and their validation models. Importantly, the utility of KATi is based on a key concept:
using KATi to abrogate the activity of an already down-regulated essential protein (effectively creating
a lethal knockout) provides another innovative mechanism for targeting cancer cells, while significantly
minimizing any off-target effects to normal cells. This approach, combined with the rapidly developing
interest in KATi, suggests that KATi have a bright future for providing truly personalized therapies.

Introduction
Modifications to histones (such as methylation, phosphoryla-
tion and acetylation) are used to regulate chromatin structure
(relaxing or opening chromatin), ultimately regulating
transcription. Importantly, histone acetylation is required
for many aspects of gene regulation, metabolism and
genome organization/maintenance (for review see [1,2]).
Significantly, dysfunctional acetylation has been implicated
in numerous diseases, including cancer (for review see [3,4]).
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Histone acetylation is primarily regulated by two opposing
classes of enzymes, histone acetyltransferases [HATs; also
called lysine (K) acetyltransferases (KATs)] and histone
deacetylases [HDACs; also known as lysine deacetylases
(KDACs)] (Figure 1A). In addition, metabolic regulation
of histone acetylation is mediated in part though acetyl-
CoA cofactors [5,6]. Currently significant worldwide effort
is being expended to investigate the use of HDAC inhibitors
for the clinical treatment of cancer [7–9]. However, the
therapeutic potential of hindering the opposing machinery,
KATs, for the treatment of cancer has only recently been
recognized [10–15].

KAT family
The KAT family consist of 17 members, as defined by the
HUGO gene nomenclature committee. Within this there
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Figure 1 Cycle of histone acetylation/deacetylation and histone acetylation superfamily

(A) Molecular cycle and effects of histone acetylation and de-acetylation. (B) Highlighting the KAT subfamily of HAT’s. Analysis

by EBI Neighbour-joining clustering method (real phylogram displayed). Generated using SplitsTree4 [64]. (C) Phylogenetic

analysis of HAT family members. Labelling: Protein name, isoform (Iso) and gene name.

are several distinct families of KATs (based on sequence
conservation in the HAT domain), with the largest and most
diverse being the MYST family [3,5,10,15–20] (Figures 1B
and 1C). The MYST family includes MOZ, YBF2, MOF and

Tip60 (Figure 1C) [21–24]. Membership of the MYST family
is defined by the presence of a conserved 3-region histone
acetyltransferase domain (containing an acetyl-CoA binding
site, a C2HC zinc finger and a helix-turn-helix DNA-binding
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Figure 2 Tip60 protein structure and expression and cellular consequences of HAT inhibition

(A) Tip60 protein structure. (B) Tip60 expression in prostate cancer biopsies. Thirty micrograms of total protein extracted

from prostate cancer biopsies. Antibodies used: anti-Tip60 (K17, Santa Cruz Biotechnology), anti-actin (Abcam). Increasing

Gleason scores indicates a worse prognosis in prostate cancer. (C) Model of the mechanism of action allowing HAT inhibitors

to preferentially target cancer cells.

motif), responsible for their catalytic histone acetyltransferase
activity. Variation between specific members is conferred
through the presence of further structural features, such as
zinc fingers, PHD fingers and chromodomains. The presence
of these additional domains provides an insight into the
substrate specificity of the family members. In addition to
their well-known role in histone acetylation, the MYST
family has a broad substrate range, with new non-histone
targets regularly being reported (reviewed in [25,26]). Within
the MYST family the importance of Tip60 is highlighted, as a
Tip60 knockout is lethal [27]. This essential role for Tip60 is
further demonstrated in cancer cells, where down-regulation
results in cell death [28,29].

Tip60
The Kat5 gene encodes Tip60 and isoform 1 (of 4) is
a ∼60 kDa, 513aa long protein incorporating a histone
acetyltransferase domain and a chromodomain (Figure 2A).
Tip60 has many diverse substrates, which is reflected in
its diverse role in cellular processes. These include the
DNA damage response, the cell cycle, apoptosis, signalling
and transcriptional regulation (for review see [29–31]).

Importantly, Tip60 auto-acetylation at a key residue in the
active site of its MYST domain (K327) regulates, but is not
required for, its HAT activity [32,33].

Tip60 and genome stability
A key role of Tip60 is its regulation of the DNA double
stand break (DSB) response through acetylation (leading
to activation) of the apical kinase ataxia telangiectasia
mutated (ATM) and other key DNA damage response and
repair proteins (for review see [14,30]). Following a DSB
Tip60 is responsible for acetylation of the inactive ATM
homodimer, allowing monomerization of active ATM which
then initiates the DNA damage response by phosphorylating
multiple targets [29,31,34,35]. The importance of the Tip60-
dependent activation of ATM is demonstrated following
Tip60 knockdown, resulting in an abrogated DSB response
and sensitivity to ionizing radiation [36]. Identification of this
crucial genome protective role of Tip60 (activating ATM, the
DSB response and DNA repair) has led to the proposal that
the Tip60 haploinsufficiency observed (in breast and prostate
cancer) allows Tip60 to function as an oncogene [27].
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Tip60 down-regulation in cancer
Recently it has been demonstrated that several KATs
are down-regulated in many different cancers [27,37–39].
Focusing specifically on Tip60, reduced Tip60 transcript
expression has been observed in colon, lung, breast and other
cancers [10,27,40–43]. Importantly, reduced Tip60 expression
was associated with a significantly poorer 5-year disease
free survival in primary melanoma patients (P = 0.016)
and in metastatic melanoma patients (P = 0.027) [43]. The
same study indicated that Tip60 expression was a significant
independent prognostic marker for primary (P = 0.024) and
metastatic melanomas (P = 0.035) [43].

Investigating Tip60 protein levels in cancer, a significant
reduction in Tip60 staining (immunohistochemical) has been
observed in patient breast and prostate cancer samples [19,27].
Our preliminary data supports this, as we also observed a
significant reduction in total Tip60 protein levels in prostate
and breast cancer (Figure 2B, Brown et al. unpublished).
Interestingly, we observed that Tip60 loss in prostate cancer
correlated with an increasing Gleason score (indicating a
worse prognosis), a correlation previously demonstrated
in gastric cancer [44]. This is further supported by a
recent study demonstrating significantly reduced expression
(between 130 cancers and 55 controls) (P = 0.003) where an
increasing reduction in Tip60 mRNA expression correlates
with increasing Gleason score [45]. Reduced Tip60 expression
has also been observed in breast, melanoma and prostate
cancer cells [19,27,46]. In addition, recent unpublished work
reported significantly reduced Tip60 levels in lung, pancreatic
and breast cancer cell lines (compared with non-tumorigenic
controls) [47]. Importantly, although Tip60 is undetectable in
some samples previous work demonstrated that loss of Tip60
is lethal, therefore it is likely below the detection threshold
of these assays. Together we believe this data suggests and
merits testing of the hypothesis: Tip60 loss correlates with
increasing disease severity.

Combined, results from multiple cancers indicate that
many cancers types have low levels of Tip60 (required for
survival) and that lower levels of Tip60 correlate with a worse
prognosis. This leads to a novel hypothesis: Eliminating
the remaining Tip60 activity in cancer cells (with already
reduced protein levels) will cause apoptosis. Importantly, this
hypothesis has been confirmed by multiple groups, using a
wide range of techniques [1,5,10,15,29]. Consequently, Tip60
is an excellent candidate for targeted drug development of
a targeted KAT inhibitor (KATi), which is supported by
multiple groups producing targeted inhibitors and testing
their efficacy in different cancer types [10,15,18].

KATi
The application of a lysine acetyltransferase inhibitor (KATi)
(particularly in Tip60 low cancers) is based on a novel
hypothesis: Transiently reducing the activity of a key protein
essential for survival (below a crucial minimum threshold)
results in death of cancer cells with already reduced levels

of this protein, while allowing normal cells to survive
(Figure 2C). Importantly, this hypothesis was recently
validated in a breast cancer model [15].

Tip60 targeting KATi can be classed into two broad
categories: designed small molecule inhibitors (Bisubstrate
Inhibitor A [20], MG-149 [18], TH1834 [15]) or inhibitors
from library screens (Lys-CoA [1], garcinol [48], curcumin
[1], anacardic acid [3], pentamidine [5], NU9056 [10])
(Table 1). Of these Lys-CoA, anacardic acid, garcinol and
curcumin are the best known but least specific, targeting
Tip60 in addition to pCAF and CBP/p300 (all at various
IC50s) (for review see [11,12,14]).

Structural analysis of Tip60 specific KATi
Currently, several inhibitors of Tip60 have been evaluated
[3,5,10,15,18–20] (Table 1). Many of these inhibitors are
similar in structure to acetyl-CoA, acting as competitive
binders.

Several approaches have been used to identify new KATi
candidate compounds. One approach is based on using
the natural substrate as a core and linking this to various
substituents. For example, covalently linking CoA to the
lysine residue of a substrate peptide of various chain lengths
[21]. This concept of bisubstrates was adopted later by several
other groups, producing specific KAT inhibitors. Lys-CoA is
obtained by connecting CoA and a single lysine residue via a
methylene linker [25]. Lys-CoA is a potent KAT inhibitor as a
general bifunctional substrate, with a pronounced selectivity
towards p300, but also targeting PCAF and Tip60. Enhanced
selectivity can be obtained by tailoring the peptide linker
connecting CoA and Lys. To address the MYST family
of enzymes, a series of H4 peptide-containing bisubstrate
analogues was designed. One of these, H4K16-CoA, was
reported as a potent Tip60 inhibitor with an IC50 value in
the low micromolar range [1]. Unfortunately, however, the
compound was also found to display low permeability [1].
Currently, additional targeted design of KATi is underway,
requiring testing [49,50].

Another approach is based on screening libraries of
isolated natural compounds, which has provided several
distinct key KATi, as natural compounds can span a wide
range of functionality and complexity. The two main natural
Tip60 KATi substances are garcinol and anacardic acid
(Table 1). Garcinol is a polyisoprenylated benzophenone
isolated from Garcinia indica with demonstrated IC50 values
towards Tip60 in the micromolar range. However, there is
a significant lack of selectivity, as the compound displays
similar activity towards p300 and PCAF [51]. The molecule
has been proposed to exhibit a dual binding mode, based
on isothermal calorimetric binding data, with the hydroxy
groups of the catechol unit interacting with the acetyl-CoA
binding pocket and the isoprenoid units interacting with
the substrate binding region [52]. Subsequent modifications
to garcinol have been reported, primarily increasing
selectivity towards p300 and CBP (low micromolar
range) [53].
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Table 1 Tip60 small molecule inhibitors

Compound

Molecular

targets Structure Reference

Pentamidine Tip60 [5]

TH1834 Tip60 [15]

NU9056 Tip60 [10]

Anacardic

acid

Tip60

PCAF

CBP/p300

[3,18,54]

MG-149 Tip60

hMOF

[18]

Garcinol Tip60 [48]

Bisubstrate

Inhibitor A

Tip60 [20]

Curcumin P300/CBP

PCAF

Tip60

[1,51]

Lys-CoA P300/CBP

PCAF

Tip60

[1]
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Anacardic acid is found in the liquid of cashew nut shells
and has been identified as a non-selective, non-competitive
inhibitor of p300/CBP, PCAF and Tip60 [18]. The inhibitory
effect towards its targets is similar under similar experimental
conditions, but IC50 values vary greatly between reports.
The high lipophilicity of anacardic acid is a limiting factor
towards its development as a therapeutic agent, with a range
of modifications addressing both the salicylic acid moiety and
the lipophilic chain proposed in order to enhance selectivity
[54]. An example is MG-149 (Table 1), which is one of several
6-alkylsalicylates currently under investigation [18].

Curcumin is another natural substance reported to inhibit
Tip60 activity [53]. Curcumin is a major component of
Curcuma longa rhizome commonly used in Indian and
Chinese traditional medicine. It has been reported to exhibit a
mode of action involving covalent binding at a site away from
the substrate and cofactor binding pocket. Although some
selectivity towards different KAT enzymes could be noted,
curcumin is a very promiscuous binder inhibiting other
epigenetic targets such as lysine (K)-specific demethylase 1A
(LSD1), DNA (cytosine-5)-methyltransferase 1 (DNMT1)
and KDACs, as well as a wide range of related non-epigenetic
proteins [55]. Curcumin is furthermore a known membrane
disruptor, and hence some of its activity can most likely be
traced to modes of action other than Tip60 binding. A number
of analogues to curcumin have been developed aiming at
better selectivity and higher water solubility. Although some
success is noted, the analogues suffer the same issue of
promiscuous binding as the parent compound [56].

Another approach to identify new KATi is in silico
screening of small molecule databases, using the returned
compounds as the basis for further derivatization. A high
throughput screening of ∼80,000 small molecules led to the
production of NU9056. NU9056 specifically inhibits Tip60
activity with an IC50 value of 2 μM. In prostate cancer cells
NU9056 treatment induced apoptosis through caspase-3 [10].
Using this method other small molecule inhibitors of Tip60
have also been reported, Lys-CoA and Bisubstrate Inhibitor
A [1,20].

An interesting molecule is pentamidine (PNT, Table 1).
PNT has been used clinically against parasitic protozoa for
over 70 years. Only recently was it reported that DNA and
protein synthesis in human tumours was decreased following
PNT treatment of whole cell extract, whereby PNT was
proposed as an anti-tumour drug [5]. The mode of action is
thought to be through inhibition of Tip60 activity, suggested
by decreasing histone H2A acetylation and ATM activation,
although the exact mechanism requires confirmation [5].

Using PNT as a model compound for Tip60 binding, the
modes of interaction of PNT and acetyl-CoA were examined
through extensive computational docking as a means of in
silico drug design [15]. Since several KAT’s display highly
conserved binding pockets, small variations in these could be
analysed and used in order to enhance selectivity. This was
exploited as the docked structure of PNT was combined with
combinatorial chemistry to explore voids in the active site
pocket, together with the discovery that the binding pocket

carries differently charged ends interacting with specific
amino acids. The resulting compound TH1834, designed
entirely from rational drug design, was then synthesized
and tested in breast and prostate cancer cells [15]. TH1834
alone induced DNA damage, which importantly was further
increased when combined with IR in cancer cells but not
in control cells. Mechanistically, it was proposed that the
observed increased TH1834-induced γ H2AX foci formation
is due to inhibition of chromatin remodelling functions
of Tip60 that are required for normal cellular mainten-
ance, and a reduction in Tip60-dependent DNA repair
signalling [15].

Targeted rational design, as demonstrated by the validation
of TH1834 in vitro and in cells, is one in silico approach that
holds strong promise for the future. This can begin based on
known binders, or as a final stage in virtual high-throughput
screening campaigns as a means to address selectivity issues
found for many families of enzymes. For example, this
method of drug discovery is useful for the MYST family
enzymes, many ATP binding kinases and the serine protease
family, all of which possess active site pockets showing
very high structural similarity (within their respective
families).

High throughput virtual screening of compounds targeting
KAT enzymes resulted in the phthalimide analogue Bisub-
strate Inhibitor A (Table 1), based on the acetyl-CoA binding
site of the Tip60 yeast homologue Esa1 crystal structure.
KAT inhibition efficacy and specificity was assessed using
a radiometric in vitro assay, showing non-selective inhibitory
activity with IC50 values in the 100–200 μM range [20].
It is proposed that selectivity could be enhanced by sub-
jecting the compound to targeted combinatorial chemistry,
exploring specific aspects pertaining to the Tip60 active
site.

As seen from the examples listed above, although
the in silico drug design of KAT inhibitors is in its
infancy, it demonstrates huge potential. Combining current
large databases of compounds (e.g. the ZINC repository,
comprising >20 million compounds) and present day
screening software with highly parallel supercomputing
clusters, screening for potential binders followed by rational
design to enhance selectivity offers an attractive initial step
prior to experimental synthesis and assays. No doubt, we will
in the future see more compounds reported in the literature,
where the initial stages of drug design is the result of in silico
selection and refinement.

The potential of KATi as chemotherapeutics
Currently curcumin, one of the least specific KATi, is the only
compound undergoing clinical trials for cancer (for review
see [12,57]). Specific Tip60 targeting KATi have been shown
to interfere with the DDR, providing additional benefits
which can be exploited when Tip60 KATi are combined with
other cancer treatments (such as IR and chemotherapeutics)
which work through the production of DNA damage
[15,28,29,36,58–61]. Indeed, Tip60 dependent acetylation of
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E2F1 is required for repair of cisplatin induced DNA damage
in human lung carcinoma and osteosarcoma cells [62,63].
Further supporting this, Tip60 inhibition combined with IR
induces apoptosis in cervical, breast and prostate cancer cells
[5,15].

Conclusions
Further knowledge is required to understand the molecular
roles KATs play and the mechanisms that KATs influence,
in cancer progression and maintenance. The challenge is
translating understanding about these basic mechanisms
underpinning cancer into clinically relevant applications,
optimally producing a new class of chemotherapeutic drugs
that will lead to a major breakthrough for the personalized
treatment of cancer. The development of KATi is one such
application. Clearly, the use of KATi to target cancer will
become a focus for pre-clinical evaluation of cancer treatment.
Within this, KATi focusing on Tip60 provide a clear benefit
as in general, they specifically target cancer cells over healthy
cells, are applicable to a number of common cancers requiring
urgent additional treatment options which have been reported
to be Tip60 low (i.e. breast and prostate), KATi are more
specific and importantly can be combined with current
chemotherapeutics for synergistic effect. Furthermore, this
is combined with Tip60 as a potential new biomarker,
optimally facilitating treatment when paired with a KATi
therapeutic.
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