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Abstract
One in 400 people has a maternally inherited mutation in mtDNA potentially causing incurable disease. In
so-called heteroplasmic disease, mutant and normal mtDNA co-exist in the cells of carrier women. Disease
severity depends on the proportion of inherited abnormal mtDNA molecules. Families who have had a child
die of severe, maternally inherited mtDNA disease need reliable information on the risk of recurrence in
future pregnancies. However, prenatal diagnosis and even estimates of risk are fraught with uncertainty
because of the complex and stochastic dynamics of heteroplasmy. These complications include an mtDNA
bottleneck, whereby hard-to-predict fluctuations in the proportions of mutant and normal mtDNA may arise
between generations. In ‘mitochondrial replacement therapy’ (MRT), damaged mitochondria are replaced
with healthy ones in early human development, using nuclear transfer. We are developing non-invasive
alternatives, notably activating autophagy, a cellular quality control mechanism, in which damaged cellular
components are engulfed by autophagosomes. This approach could be used in combination with MRT or
with the regular management, pre-implantation genetic diagnosis (PGD). Mathematical theory, supported
by recent experiments, suggests that this strategy may be fruitful in controlling heteroplasmy. Using mice
that are transgenic for fluorescent LC3 (the hallmark of autophagy) we quantified autophagosomes in
cleavage stage embryos. We confirmed that the autophagosome count peaks in four-cell embryos and this
correlates with a drop in the mtDNA content of the whole embryo. This suggests removal by mitophagy
(mitochondria-specific autophagy). We suggest that modulating heteroplasmy by activating mitophagy may
be a useful complement to mitochondrial replacement therapy.

The problem of heteroplasmic mtDNA
disease and pre-implantation
development
Mitochondrial diseases range from severe to very mild
and common. These potentially affect up to one in 400
individuals, all of whom are likely to develop impaired
hearing, but very few severe complications [1]. Those caused
by pathogenic mutations in mtDNA are problematic because
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of the unique biology of maternal inheritance. Prenatal
diagnosis [2–4] and even estimates of risk are fraught with
uncertainty [5] because of heteroplasmy (co-existing normal
and mutant mtDNA). There is also a threshold effect in most
mtDNA diseases, with the level of heteroplasmy required
for symptoms to become manifest varying from <10 %
to 100 % mutant mtDNA in different tissues. In addition,
there is an mtDNA bottleneck whereby dramatic and
unpredictable fluctuations in the proportions of mutant and
normal mtDNA may arise between generations (illustrated
in Figure 1B): recent work combining mathematical theory
and experiments has helped elucidate the debated mechanism
of this process [6]. During transmission of mtDNA from
mother to child, significant fluctuations are already apparent
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Figure 1 Transmission of mtDNA disease and strategies to prevent transmission of mtDNA mutations

(A) Cartoon of the mitochondrial bottleneck: heteroplasmy of mtDNA in primordial germ cells may segregate during the

∼50-fold increase in mtDNA content as they develop into primary oocytes, resulting in different mutant loads (0–80 % in

this illustration). Although a major component of the trans-generation switching in mutant load has occurred by the oocyte

stage, further segregation occurs during embryonic and fetal life. Three available ways to reduce the risk of transmitting

mitochondrial DNA disease: oocyte donation, pre-implantation genetic diagnosis and mitochondrial replacement therapy.

Red represents mutant mitochondrial DNA, pink and white represent successively higher proportions of normal mitochondrial

DNA. Blue represents genetic material from an unrelated donor. (B) No intervention: offspring’s mutant mitochondrial DNA

load will vary greatly. (C) Oocyte donation: current availability in the United Kingdom is limited by the availability of oocyte

donors. (D) Pre-implantation genetic diagnosis: is available in the United Kingdom for most mitochondrial DNA diseases. (E)

MRT nuclear transfer: being developed in the United Kingdom, first cases likely this year, not yet available in the United

States.
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in oocytes in both controls [7] and carriers of mtDNA disease
[8–10].

The clinical implications of the mitochondrial bottleneck
and the strategies for preventing transmission of mtDNA
disease are illustrated in Figure 1. Oocyte donation
(Figure 1C) is an appropriate strategy for all maternally
transmitted mtDNA disease because it effectively reduces
the risk of transmission to the population prevalence. Pre-
implantation genetic diagnosis (PGD, Figure 1D) [2] is
widely licensed to reduce transmission of mtDNA diseases
from mother to offspring [11]. In PGD the mutant load of
embryos produced by in vitro fertilization (IVF) is estimated
from either 1–2 cells taken from cleavage stage embryos,
or approximately five trophoblast cells from blastocysts
cultured in vitro. If the embryo with the lowest mutant
mtDNA load is selected for transfer to the uterus, this will
greatly reduce the risk and severity of mtDNA disease in
any resulting pregnancy [3,12]. In practice, some centres set a
threshold that depends on the penetrance of the mutation,
above which transfer will not be performed. Estimating
mtDNA mutant load from a single blastomere of a cleavage
stage embryo [13] is accurate. Measurements based on
trophoblast cells in a blastocyst biopsy have been successful
[14] but are more controversial [15,16]. This might be because
mtDNA segregation coincides with the increase in oxidative
phosphorylation that occurs at implantation.

Mitochondrial replacement therapy (MRT, Figure 1E) is
now available in the UK as an alternative approach to
PGD, apparently successful in monkeys [17] and mice [18],
and imminently to be performed in humans. Introducing
the maternal nucleus into a donor cell with healthy
mtDNA immediately before (metaphase spindle transfer
[17]) or after (pronuclear transfer, along with the male
pronucleus [19]) fertilization is more effective in increasing
the proportion of normal mtDNA [10]. However, there
are difficulties in synchronizing menstrual cycles [20],
risks from imprinting of nuclear DNA [21] and from
compatibility between nuclear and mitochondrial DNA [22]
as well as ethical concerns around having three genetic
parents [23].

‘Cytoplasmic transfer’ of donated, healthy mitochondria
has been applied clinically with a view to improving function
in aged human oocytes. There is some evidence that oocytes
that are depleted of mtDNA benefit from this treatment
in pigs [24]. In humans however, an ongoing study that
has been widely publicized [25] is controversial [26]. Given
that this technique aimed to supplement and not replace
the mother’s mitochondria, it is not surprising that only
a low level of injected mtDNA was detectable in the
resulting ‘transmitochondrial’ children [27]. However, one
transmitochondrial child born after cytoplasmic transfer was
held to be autistic [28], but the numbers were insufficient to
determine whether this procedure caused any overall long-
term problems to the children.

One potential complication arising from these therapies
is the risk of introducing non-compatible mtDNA [22],
so that mtDNA segregation favours the pathogenic mutant

mtDNA. To analyse this issue, Burgstaller et al. [22] produced
four heteroplasmic mouse models by ooplasm transfer,
placing various naturally occurring mtDNA haplotypes
from mice captured from the wild in Europe on to a
common laboratory mouse mtDNA and nuclear background
(C57BL/6N). The wild-derived haplotypes used differ
considerably from each other and from C57BL/6N, leading
to variable genetic distances between haplotypes in the four
crosses. A mathematical framework facilitated the direct
comparison of many of these mice, revealing that tissue-
specific segregation was very common (including within
post-mitotic tissue types), the magnitude of segregation
increasing with the genetic distance between the mtDNA
haplotypes [22]. These data suggest that unpredictable
segregation of mutant mtDNA could impair the effectiveness
of mitochondrial replacement therapy unless donor and
recipient mtDNA haplotype are closely matched [29]. This
would be of particular concern if heteroplasmy per se were in
some way detrimental [30].

Another promising approach to reducing the load
of pathogenic mutant mtDNA in the germline involves
transcription activator-like effector nucleases (TALENs) [31].
These can be targeted to mitochondria to cleave different
classes of pathogenic mtDNA mutations. TALENs have high
specificity for the mutant being targeted, and this approach
is sufficiently versatile to target many different mutations. It
can be adapted for use in germ cells [32]. Current problems
are that the mtDNA copy number is knocked down by the
procedure by perhaps 75 % of the starting level, to a level
rather close to the threshold number of mtDNAs required
for successful embryonic development.

Mitophagy improves mitochondrial quality
Mitophagy is a mitochondria-specific type of autophagy
(self-degradation by cells) with the potential to remove
mtDNA mutants, illustrated in Figure 2. Mitophagy is
regulated by both mitochondrial membrane potential and
dynamics. In the best-known description, mitochondrial
depolarization activates PINK1 to recruit ubiquitin ligase,
Parkin, to mitochondria, leading to clearance. On the other
hand excessive mitochondrial fission leads to depolarization-
independent mitophagy [33]. This may be exacerbated by
reduced expression or ubiquitinylation of pro-fusion proteins
OPA1 and the mitofusins (Mfn1 and Mfn2) or activation of
pro-fission proteins such as DRP1. Damaged mitochondria
are recruited to the autophagosome via the mitochondrial
proteins Nix and BNIP3 and the adapters P62 and LC3-
II. Autophagy proteins ATG5 and ATG7 regulate formation
of the autophagosome. The autophagosome then fuses with
a lysosome and its contents degraded at low pH. Small
regions of the mitochondrial network serviced only by
detrimental mutant mtDNA may have a decreased membrane
potential and may be isolated by fission [34]. The clearance
of these non-functional, isolated mitochondria could filter
out damaged mtDNA preventing transmission to the next
generation [35–39].

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence
4.0 (CC BY).

D
ow

nloaded from
 http://port.silverchair.com

/biochem
soctrans/article-pdf/44/4/1091/486407/bst0441091.pdf by guest on 25 April 2024

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1094 Biochemical Society Transactions (2016) Volume 44, part 4

Figure 2 The mitophagy pathway

The mitochondrial network is dynamic with events of membrane fusion and fission within the network. The morphology

of the mitochondrial network observed reflects the balance between these events. An increase in fission or a decrease of

fusion is favourable to mitophagy when an increase of fusion or decreased fission inhibits the mitophagy. A simplified view

of mitophagy is represented in the cartoon; briefly a dysfunctional mitochondria is targeted, potentially by Parkin and Pink1

proteins, to a forming autophagosome, the phagophore. The phagophore formation is under the control of Atg5/7 proteins

notably. The autophagosome matures and engulfs the mitochondria before fusing with a lyososome for degradation. Our IN

Cell system is able to measure the co-localization between mitochondria and autophagosome.

Although widely discussed, this type of mitophagy may
be quantitatively less important than mitophagy that is
activated by nutrient deprivation. These processes have
been designated type 2 and type 1 mitophagy respectively
[40]. Type 1 mitophagy declines with age [41] and may
remove the bulk of reactive oxygen species (ROS) that
result from oxidative phosphorylation. It could underlie
the beneficial effect of low nutrient intake on longevity
[42]. Type 2 mitophagy involves PINK1 and Parkin and
appears to be important in preventing neurodegeneration.
Whereas dysfunctional mitochondria often fragment, other
types of mitochondrial energetic stress, including nutrient
deprivation and exposure to the mitochondrial poison
doxorubicin [43], induce fusion of the network, variously
described as mitochondrial ‘elongation’ [44] and ‘stress-
induced mitochondrial hyper-fusion’ (SIMH) [45]. This pro-
survival mitochondrial response to stress prevents mitophagy
[44] and increases cellular ATP, probably enabling cells to
tolerate high levels of mutant mtDNA [46]. While an adaptive
response in the short term, SIMH prevents mitochondrial
fragmentation and may impair mitochondrial quality control

by mitophagy, as well as playing other physical and chemical
roles in cells [47]

Autophagy is essential for normal pre-implantation
development in mice [48]. Embryos lacking oocyte-specific
expression of Atg5 and hence normal autophagosomes
failed to develop beyond the 4–8-cell stage [49]. Although
mitophagy could be critically important for controlling
mtDNA segregation at this stage, little or nothing is known
about mitophagy in the germline.

Measuring mitophagy
Studies of mitophagy are less prominent that one might
expect, given its potential for modifying the course of
mtDNA disease. This may be because both autophagy
and mitophagy are transient processes and hence difficult
to measure. The abundance and flux of autophagosomes
engulfing mitochondria are specific measures of mitophagy
that are preferred to quantifying key autophagy proteins
[50]. We therefore not only measured the number of auto-
phagosomes and mitochondria engulfed by autophagosomes,

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence
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but also used mtDNA analysis to assess mitochondrial
quality. As mitophagy events are rare, we chose to use
high-throughput microscopy [41] to ensure that a large
number of cells are analysed. The mitochondrial quality
analysis was based on the observation that the mutation
m.3243A>G is progressively lost when the cells are grown
in conditions requiring oxidative metabolism (glucose-free
galactose media). This mutation is easier to measure than
many other ways of assessing mitochondrial flux. The effects
of pharmacological modulators on these two measures were
consistent, confirming that the high throughput imaging
output (autophagosomes co-localizing with mitochondria)
reflects mitochondrial quality control [41].

The data generated with these methods suggest that those
mitochondria removed by mitophagy are the ones with
the highest levels of mutant and the least capacity for
oxidative phosphorylation. Given that mitochondrial fusion
requires oxidative phosphorylation [51], these mitochondria
are likely to be fragmented, and this is another potential signal
for mitophagy. mtDNA mutations may also increase ROS
production, and increasing ROS damage to mitochondrial
proteins and mtDNA could be the signal. PINK1 and Parkin
are probably involved in recognizing some types of damage,
and ubiquitination is important in many cases. Nevertheless,
(1) the type of mitophagy and the trigger required may vary,
depending on circumstances (2) when the mutation load or
level of damage are very high, mitophagy or other signals may
precipitate a cellular catastrophe such as cell-death signalling
or mtDNA depletion. Furthermore, the existence of mtDNA
disease clearly demonstrates that mitophagy is not able to
remove all damaged mitochondria. More work is needed to
clarify this.

MtDNA copy number during
pre-implantation development
Whereas relatively few mtDNA genomes (∼200 in mouse)
are present in primordial germ cells, the earliest stages of
germline differentiation, there is a massive expansion in
mtDNA content to 200000–300000 [52] as the oocyte grows
and matures. Although oocytes must contain at least 40000–
50000 copies of mtDNA in order for an embryo to give rise
to a viable foetus [53], unusually high levels of mtDNA
at the blastocyst stage of pre-implantation development
are associated with failure of implantation [54]. Most
authors state that mtDNA content of the oocyte/embryo
remains constant between ovulation and morula [55–57], but
this is not the case in cows [58] where mtDNA declines
by 60 % between the 2- and 4/8-cell stage. Immediately
after fertilization, mtDNA barely replicates [55–57] and
metabolism is slow [59]. However, in pigs there is evidence
for mtDNA synthesis between the 2- and 4-cell stage [24].
Hence comparisons with other species must be interpreted
with caution. At the blastocyst stage, a proportion of
undifferentiated cells become the inner cell mass which
eventually gives rise to the body of the embryo, the remainder
differentiating into the placenta and membranes. A tiny

minority of cells become the precursors of primordial germ
cells that transmit mtDNA to future generations.

We studied mtDNA copy number in oocytes and pre-
implantation embryos generated in vitro using quantitative
PCR. The mtDNA of these mice is wild type C57BL/6N.
Figure 3 shows that the total mtDNA content of the oocyte
developing through cleavage stage embryo to blastocyst
does not remain constant as described by previous authors
[55–57]. Rather, there is a progressive decline in (total per
oocyte/embryo) mtDNA to ∼50 % by the 4/8-cell stage.
The initial drop is apparent in other publications but has
barely been reported [60]. Unfertilized oocytes had a higher
mtDNA content than either those that failed to fertilize
or single cell zygotes. This strongly suggests that mtDNA
turns over during IVF development. The reason for the drop
in mtDNA content is unclear. However, it could involve
mitophagy as discussed below.

Mitochondrial dysfunction drives cells to increase mtDNA
copy number in both tissue culture models and in vivo,
a compensatory adjustment that may be ROS dependent
[61]. Both mtDNA content and heteroplasmic load increase
with developmental stage in oocytes and cleavage embryos
carrying the m.3243G mutant mtDNA [62]: potentially mi-
tochondrial dysfunction drives proliferation of mitochondria
and mtDNA as it does in muscle and placenta [63].

Selection against detrimental mtDNA
mutants contributes to the bottleneck
Purifying selection against detrimental mtDNA mutants in
mouse [35,36,64] may have evolved to maintain germline
homoplasmy. In perhaps the first transmitochondrial mice,
we found that mutant mtDNA was rapidly lost [37].
In a second model, maternal transmission of mtDNA
rearrangements was attenuated by advancing maternal age
[38]. Thirdly, using a proof reading mutation of the mtDNA
polymerase to generate multiple mtDNA mutations, Larsson
and colleagues demonstrated selection against transmission
of deleterious mtDNA mutations to the offspring [35] that
was not apparent in oocytes [65,36]. A marked difference
in distribution has also been shown between different
pathogenic mtDNA in heteroplasmic mutant oocytes,
such as m.3243A>G, rearrangements [8] and m.8993T>G
[3,12].

Around the onset of biparental gene expression, there is
a surge of autophagy [48]. This was neatly demonstrated by
Mizushima and colleagues, who visualized autophagosomes
by making a mouse in which they tagged the autophagy
protein, LC3, with the fluorescent marker, GFP [66,67].
What drives this increased autophagy is unclear. However,
this could be a critical stage in purifying selection of
transmitted mtDNA. We used Mizushima’s mouse to
investigate whether the drop in mtDNA we had documented
soon after ovulation was accompanied by evidence of
autophagy. Figure 3 shows data that autophagosome counts
are high at the stage when mtDNA content is dropping.
The lowest mtDNA copy number is at the morula stage,

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence
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by which time the preceding surge in autophagosomes has
disappeared.

To determine whether the mtDNA content at this stage
could be modulated pharmacologically we exposed two-
cell embryos to activators of mitophagy, either rapamycin

or phenanthroline for 4 h. We have previously shown that
these drugs are able to activate mitophagy in tissue culture
cells [41]. However, they appear to be qualitatively and
mechanistically different. Rapamycin increases mitophagy
by means of its general effect on autophagy, increasing

Figure 3 Evidence of autophagy in mouse oocytes and pre-implantation embryos

(A) Autophagosomes of oocytes and pre-implantation embryos of mice with GFP-tagged LC3 were visualized by fluorescence

microscopy and autophagosomes per embryo counted. Relative mtDNA content (AU for arbitrary units) was assessed by

single embryo qPCR. The mtDNA of these mice is wild type C57BL/6N and each embryo was individually lysed using an

alkaline lysis protocol. After neutralization using tricine, the Taqman quantitative PCR was run for mtDNA along with standards

to quantify the mtDNA content per embryo. The results show that mtDNA declines during active autophagy. (B) Two-cell

embryos have been treated with rapamicin (red bars), phenanthroline (green bars) or not (blue bars) for 4 h to activate

mitophagy; rapamycin 100 nM increased autophagosomes number per embryo and mtDNA dropped after exposure to

10 uM phenanthroline. Key *P < 0.05, **P < 0.01, ***P < 0.001 t test. t tests where distribution was normal, Mann–Whitney

elsewhere.
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Figure 3 Continued.
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the flux of autophagosomes. In tissue culture cells, we
found that rapamycin consistently increases co-localization
of mitochondria and autophagosomes, but that there was no
effect on overall mtDNA copy number [41]. That rapamycin
selects against pathogenic mutations has been demonstrated
by others [68], but did not reach statistical significance
in our model. Phenanthroline, on the other hand, is a
chelator that prevents processing and hence activation of the
pro-mitochondrial fusion protein OPA1. Hence phenan-
throline causes global mitochondrial fragmentation and
this drives mitophagy [69]. It significantly reduces both
mitochondrial mass and mtDNA content [41]. Nevertheless
the increase in mitophagy appears to be non-selective as it
does not improve the load of pathogenic mtDNA in tissue
culture.

Figure 3 shows preliminary results of exposing two-cell
embryos to each of these drugs, both of which activate
mitophagy. As expected, rapamycin significantly increases
the number of autophagosomes but has little effect on
mtDNA content. Phenanthroline on the other hand decreases
the mtDNA content (both P < 0.01). That phenanthroline
does not increase the autophagosome counts is entirely
consistent with our tissue culture data where the decrease
in mitochondrial mass and mtDNA can be massive [41].
Hence our data suggest that each of these drugs is able to
activate mitophagy in two-cell embryos. This is intriguing,
but more work is needed both to confirm it, and to determine

whether either of these drugs would be selective against
mutant mtDNA.

A theoretical framework with which to analyse and predict
the effects of these experimental interventions has recently
been developed. Johnston et al. [6] combined mathematical
modelling with a range of existing and new experimental
measurements of heteroplasmy during development to
quantitatively describe the processes altering developing
mtDNA populations in mice. The theory, supported by
existing and new experiments, predicts that interventions
increasing mitophagy will both exacerbate any selection
against detrimental mutants and increase the power of
the developmental bottleneck to increase heteroplasmy
variance between oocytes. These arise because increased
mitophagy must either decrease the size of cellular mtDNA
populations or provoke a compensatory increase in mtDNA
replication to stabilize copy number. Both of these outcomes
strengthen the effects of selection and random drift, either
due to a smaller population size or due to an increase
in the rates of the underlying cellular processes. The
relative importance of random drift and selection can be
accounted for by this theory. This mathematical treatment
reinforces preliminary experimental findings suggesting that
mitophagy activators like rapamycin or phenanthroline may
constitute new axes of intervention to increase the power
of mtDNA bottlenecking and selection to decrease mutant
load.

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence
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Conclusions
We have developed methods for investigating mitophagy
based on high throughput imaging in order to understand
mtDNA segregation in heteroplasmic mitochondrial disease.
We showed that mitophagy can be increased in cultures
from patients with the mtDNA mutation, m.3243A>G, by
energetic stress and by drug modulators of mitophagy. We
studied mitophagy during pre-implantation development in
the mouse, obtaining data that is consistent with autophagic
activity that results in a drop in mtDNA copy number soon
after ovulation. Preliminary data suggest that mtDNA copy
number may be driven both by mitochondrial dysfunction
and by drug modulators of mitophagy. Theoretical treatments
based on mathematical modelling and data-drive statistical
analysis support the idea that increasing mitophagy may
help to robustly remove mutant mtDNA. More data are
needed to inform regulators of mitochondrial replacement
therapy about these important processes that may determine
its success or failure.
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