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Protein translocation: what’s the problem?
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Abstract
We came together in Leeds to commemorate and celebrate the life and achievements of Prof. Stephen
Baldwin. For many years we, together with Sheena Radford and Roman Tuma (colleagues also of the
University of Leeds), have worked together on the problem of protein translocation through the essential
and ubiquitous Sec system. Inspired and helped by Steve we may finally be making progress. My seminar
described our latest hypothesis for the molecular mechanism of protein translocation, supported by results
collected in Bristol and Leeds on the tractable bacterial secretion process – commonly known as the Sec
system; work that will be published elsewhere. Below is a description of the alternative and contested
models for protein translocation that we all have been contemplating for many years. This review will
consider their pros and cons.

Between 20 % and 30 % of all proteins are translocated
across or inserted into lipid membranes [1,2]. The challenge
of transporting a long and charged polymer with varying
hydrophobicity and hydrophilicity across or into a semi-
impermeable barrier is indeed great. It has to be done spe-
cifically, so that only the right proteins end up the right place,
and it has to be done without compromising the barrier posed
by the membrane – necessary for compartmentalization
and energy conservation. These problems are overcome by
specialized membrane protein complexes called translocons.

The Sec pathway
The Sec machinery is found in every cell in every organism,
wherein translocation occurs through a hetero-trimeric
membrane protein core complex: the SecY-complex in
bacteria [3], archaea [4] and chloroplast thylakoid membranes
[5] and Sec61 in eukaryotes [6]. Translocation through
the Sec protein channel occurs either co-translationally, by
engaging translating ribosomes, or post-translationally. The
post-translational pathway is the main pathway for protein
secretion in prokaryotes [7], acting on unfolded pre-proteins
[8,9]. The co-translational pathway is used by eukaryotes for
secretion [10], and across most species for membrane protein
insertion [11].

For both pathways, translocation is initiated upon
targeting of a transport substrate to the SecY/Sec61 complex
at the plasma/ER membrane, via a cleavable N-terminal
signal sequence (SS) for secretory proteins or the first TM
of nascent membrane proteins (the signal anchor; SA). For
the co-translational pathway, this involves the delivery of the
ribosome nascent chain (RNC) complex to the membrane,
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guided by the signal recognition particle and its cognate
receptor [12]; the subsequently formed Sec–RNC complex
has been described structurally at medium resolution by
electron cryo-microscopy [13–16]. In bacteria, the post
translational process of protein secretion is assisted by the
auxiliary proteins SecD, SecF, YajC [17,18]; whereas co-
translational membrane protein insertion is facilitated by
YidC [19,20], with the probable combination of all of these
factors into a ‘holo-translocon’ capable of both secretion and
insertion [21].

During the post-translational targeting process in bacteria,
pre-secretory proteins with a cleavable N-terminal SS often
engage a chaperone; for instance E. coli employ SecB inter
alia [22]. The role of the chaperone is primarily to maintain
the substrate in an unfolded conformation, in preparation for
threading through the SecY channel. Next, the chaperone
and pre-protein are jointly targeted to the dimeric SecA
motor ATPase for post-translational transport through the
membrane-bound SecYEG [23], whereupon the dimers of
SecA dissociate [24]. It should be noted that SecA has been
shown to interact directly with the ribosome and the exit
tunnel [25], thus probably mitigating the need for chaperones
in certain cases. Irrespective of the route taken, once SecA
and the pre-protein are engaged with SecYEG, the channel is
‘unlocked’ by the SS [26–28] and ‘activated’ by the binding
of monomeric SecA [29] (Figure 1) prior to polypeptide
intercalation and transport.

Structure of the SecYEG complex
SecYEG has three membrane protein subunits, with the
largest and most important being SecY. A crystal structure
of Methanococcus jannaschii SecYEβ at 3.2 Å [30] reveals
SecY to have 10 TMs arranged in a claw-like structure,
formed by the N- and C-terminal membrane domains (TMs
1–5 and 6–10). These two halves form an hourglass shaped
trans-membrane pore through which protein translocation
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Figure 1 Structure of SecYEG–SecA

T. maritima SecYEG–SecA (PDB code 3DIN [29]). Proteins are represented as cartoons with mesh surfaces. SecY is light pink,

with the partly opened LG helices highlighted in dark pink and the plug as grey. SecE is shown in orange, SecG in green and

SecA in light-blue, with the 2HF and PPXD coloured separately. The ATP analogue (ADP-BeFx) is coloured as orange, blue

and red spheres. The approximate position of the membrane is indicated.

occurs [31]. The pore is closed in the centre by a ring of six
hydrophobic residues and a helical plug, which may embrace
the translocating chain to prevent the undesirable flow of
small molecules and ions through the channel during the
transport process [30,32]. A lateral gate (LG) is formed where
the two domains of SecY meet, between TMs 2/3 and 7/8, for
the passage of trans-membrane helices into the bilayer. The
LG is also the site of secretory SS binding [13,26].

The SecA motor ATPase
SecA is a superfamily 2 RNA helicase, which converts
the chemical energy from ATP into directional protein
translocation through SecYEG [33]. In addition to the
nucleotide binding domains (NBD1 and NBD2), between
which ATP is bound and hydrolysed, there are additional
domains, which are apparently crucial for the recognition,
binding and translocation of secretory pre-proteins. Most
important of these are the peptide cross-linking domain
(PPXD) and the so-called two-helix finger (2HF) [34], both
of which contact the translocating polypeptide [35]. A key
role for the 2HF in protein translocation has previously been
noted [36,37], with its positioning at the SecA–SecY interface
making it a likely contender for both pre-protein [35] and
SecY interaction [38].

Binding and activation of SecA and SecYEG
In the bacterial system, SecA binds SecYEG to initiate post-
translational protein translocation [39]. The comparison of

structural data for SecYEG [30] and SecA [34] in their resting
states with the Thermotoga maritima SecYEG–SecA complex
– bound to a non-hydrolysable analogue of ATP – reveals
numerous conformational changes in both SecA and SecY
(Figure 1) [29]. In SecA, the PPXD moves towards the NBD2
by about 25 Å, forming a clamp that prevents dissociation
of the translocating pre-protein [29]. The 2HF also rotates,
protruding into the SecY channel. These conformational
changes are accompanied by stimulation of the ATPase
activity in SecA, from its very slow basal level [40]. For SecY,
the principal rearrangements manifest in the cytoplasmic
loops, which rearrange to mediate tight binding to SecA.
These movements are accompanied by a partial opening of
the channel and a widening of the LG, which in turn perturbs
the plug [29,41] – perhaps facilitating its displacement by an
incoming pre-protein.

The widening of the LG opens up a gap between the
hydrophilic channel and the hydrophobic membrane interior,
with sufficient width to accommodate the α-helical SS.
Indeed, structural data has routinely sited the SS in this
region [14,15,26,41], with further support lent by cross-
linking studies [42–44]. Although no structure yet exists of the
entire SecYEG–SecA–substrate complex, enough evidence
is available to localize the various components: we have
combined the structurally determined position of the SS
[13,26] with the known route of the substrate through SecY
[30,31] and SecA [35] to produce a plausible model of pre-
protein positioning within the complex during translocation
(Figure 2A). Although speculative, the model represents
a likely approximate pathway for the pre-protein, and
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Figure 2 Modelling a pre-protein path through the complex

(A) Model built based on the SecYEG–SecA crystal structure (PDB code 3DIN [29]) which has been allowed to relax with

MD simulations (full details to be published separately). The proteins are shown as cartoons, with SecA in light blue, SecY

in pink, SecE in light orange and SecG in light green, with a bound ATP molecule shown as orange, blue, white and red

spheres. A prospective pathway for a model substrate (the first 76 residues of pro-OmpA; shown as dark blue cartoon and

mesh) has been built into the channel based on known cross-linking sites in SecA (pink, red, blue and white spheres; [35])

and the position of the SecY pore ring [30]. The helical SS was built based on the density of the DsbA SS from a recent

cryo-EM structure of the SecY complex bound to a ribosome (inset – DsbA SS light blue, with the density shown using map

EMD-5693, at 3.0 sigma within 2.6 Å of the selection [13]). (B) Close-up of the channel from (A) with the substrate, LG and

2HF shown as dark blue, pink and teal mesh respectively. The pore ring residues of SecY are highlighted in red.

demonstrates the tightness of space within the channel
(Figure 2B).

The association of SS with the LG acts as an allosteric
activator of the SecYEG complex, ‘unlocking’ the channel
and priming it for transport of the rest of the pre-protein
[26–28,41]. The membrane exposure of the SS binding
site provides a proofreading step: sequences that are too
hydrophilic are excluded, and presumably fail to unlock the
channel for productive transport. During the co-translational
process of membrane protein insertion, which is independent
of SecA, hydrophobic transmembrane helices partition from
this location laterally into the bilayer [23].

Current models of Sec-mediated protein
translocation in prokaryotes
The secretion process can in essence be described as two
distinct steps: activation/initiation (outlined above) and
translocation. There is enough structural detail available to
mock up the post-initiation state (Figure 2A), the assembly
of which involves the dissociation of SecA dimers [24],
the relocation of the PPXD [29] (described above) and
the activation of the ATPase, as proposed previously [40].
Less is understood about the bioenergetics of the transport
mechanism, i.e. how ATP hydrolysis and the trans-membrane
proton motive force (PMF) cooperate to push the rest of the
polypeptide across the membrane.

In contrast with the sequence-dependent (SS recognition)
initiation process, the subsequent translocation of the
polypeptide is far less specific. A considerable variety of
proteins are transported through SecY, and these inevitably

contain a range of different sequences, including stretches
of hydrophobic and charged amino acids; it is not easy to
envisage a process that will recognize and transport them
all. Nonetheless, several mechanisms have been suggested,
with varying levels of experimental support. These can be
broadly divided into three categories: those driven by a
power-stroke within SecA; those that involve quaternary
interactions between multiple SecA molecules and those that
bias the direction of diffusion across the membrane (Figure 3).
However, these are not necessarily mutually exclusive, and
models proposed more recently tend to contain combinations
of all three – perhaps in an attempt to rationalize the mass
of apparently conflicting data accumulated over the past
25 years.

Power-stroke models
Power-stroke models invoke the physical pushing of pre-
protein through the channel and across the membrane, driven
by multiple rounds of ATP hydrolysis (Figure 3A) [45]. Each
ATP turnover cycle transports a short stretch of peptide,
then releases it and resets to bind upstream [36,37,46]. Such
mechanisms are compelling in one respect, as they mimic
the DEAD-box helicases, to which SecA is related [34] –
although secretory pre-proteins lack the uniformity of the
phosphate backbone. However, as we have argued previously
[47], the major observations that led to the original proposal
of the power-stroke model – particularly the intermediate
translocation products that can sometimes be seen at low
ATP concentrations [48,49] – are by no means conclusive,
and are very much open to interpretation.

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence
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Figure 3 Previously proposed models for translocation by the Sec complex

Many previous models for how SecA drives translocation have been proposed, designed to accommodate the results of

structural and functional studies. So far, however, such models make various assumptions, e.g. they postulate the existence

of conformational changes that lack direct experimental evidence. In general these can be divided into three types: models

involving a power stroke within SecA, those that invoke quaternary interactions between multiple SecA molecules or those

which act through biased diffusion. (A) An example power-stroke mechanism, whereby conformational changes within SecA

during the ATPase cycle physically push polypeptides through the channel. In the model shown [36], the 2HF binds to the

pre-protein substrate, pushes it into the channel, then releases it and returns to its resting position. (B) The observation that

SecA can exist both as a monomer and in several different dimer forms has led to the proposal of multiple models in which

quaternary interactions drive transport. In the example shown, one SecA protomer holds the pre-protein substrate in the

channel whereas the other binds to downstream regions. ATP binding alters the SecA dimer interface, pushing the substrate

through the channel, whereas ATP hydrolysis releases SecA, allowing it to rebind downstream. (C) Rather than physically

pushing the substrate through the channel, directional movement can be achieved by selectively allowing diffusion in one

direction, while preventing it in the other. Such a ‘Brownian ratchet’ would act by using ATP to somehow prevent backsliding.

In the version shown, SecA senses backsliding and constricts to halt movement; however this is entirely speculative, as an

illustration of the core concept.

A critical component of a power stroke would be an
ATP-dependent conformational change that could push the
peptide. However, none of those suggested conformational
changes appear to be necessary for its function. At present, the
2HF is the most plausible candidate for the role of piston: it
sits directly on the path of the pre-protein substrate as it enters
the SecY channel [35], and has been proposed to alternately
enter and retract from the channel, pushing substrate in one
direction [36].

A number of objections can be raised to the 2HF-power-
stroke model. Firstly, there is little evidence that the 2HF can
retract from the channel when SecA is bound to SecY. Indeed,
the interface between SecY and SecA appears to be a very
snug fit, with very little wiggle room (Figure 2B). We have

also shown that the complex remains functional even when
the 2HF is cross-linked by a disulfide bond into SecY [38] –
any movement would therefore have to be very subtle indeed,
rendering any polypeptide pushing capabilities ineffectual. A
more general concern for all power-stroke models is the broad
variety of possible sequences that must be transported: how
could one single binding site push the hydrophobic core of
a β-barrel outer membrane protein in one stroke, then its
positively or negatively charged periplasmic loop in the next?

SecA dimerization models
The oligomeric state of SecA is a controversial topic within
the field. It is a dimer when free in solution [50–52], but

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence
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upon association with SecY it either monomerizes [24,53]
or forms one of a number of different dimers, seemingly
dependent on the experimental condition (see e.g. [27]).
This has led to the suggestion that quaternary interactions
between multiple SecA protomers might drive translocation:
perhaps ATP-dependent rearrangements in the SecA dimer
interface [54,55] – or indeed alternate monomerization and
dimerization [56] – push the substrate through the channel
(Figure 3B)?

More complicated models have been also proposed, which
combine power strokes and monomer–dimer transitions.
For example, the ‘reciprocating piston’ requires SecA to
undergo some quite startling gymnastics in order to achieve
pre-protein delivery across the membrane [46]. It has even
been proposed that different substrates require different
stoichiometries of SecYEG:SecA [57]. Although the model
Mao et al. propose uses SecB, and so cannot be universal
(not all bacteria have SecB) it should certainly be borne
in mind that most studies are carried out using a small
number of model translocation substrates. It may well be that
different mechanisms are used depending on the substrate
being transported.

Diffusional ratchet
The actual nuts and bolts of protein secretion are perhaps
better understood for eukaryotic systems compared with
bacteria. In yeast, the bound pre-protein is able to freely
diffuse back and forth through the Sec61 channel by random
Brownian motion. As the polypeptide passes into the ER
lumen, it is recognized and bound by the Hsp70 homologue
BiP [58], in an ATP-dependent manner. This binding prevents
the diffusion of the pre-protein back through the channel,
thus biases the direction of diffusion – and hence translocation
– in a forward direction. Such a mechanism, which functions
by converting random thermal energy into directional
motion, can be referred to as a Brownian ratchet (Figure 3C).

This is similar to possible diffusional ratchet mechanisms
of protein secretion in bacteria, whereby turnover of ATP
is coupled to a ratcheting of the pre-protein, acting to bias
the direction of diffusion through SecYEG. The primary
difference is that, as bacteria do not have ATP on the exterior
side of their membrane, secretion must be powered from the
cytoplasmic side. Alternatively, the ratcheting effect could
arise from an as-yet unknown chemical asymmetry across
the membrane [59].

Models whereby protein translocation is powered by
Brownian motion have many advantages, most prominently
perhaps being in the speed of thermal motion at physiolo-
gically relevant temperatures [60]. Indeed, each copy of
SecYEG probably secretes a pre-protein every second [47],
in this regard making stochastic diffusion-based models more
plausible than a processive step-wise mechanism.

In addition, the harnessing of random diffusion would
require far less sequence specificity within the substrate pre-
protein, providing that the channel can open enough to
prevent strong interactions with the substrate. Furthermore,

it should be relatively easy to speculate as to how the
PMF cooperates with this process to stimulate the passage
of pre-protein across the membrane, making extension
of a model to incorporate PMF stimulation a distinct
possibility.

Concluding remarks
The protein translocation systems found in mitochondria,
chloroplasts and the general secretory pathways (Sec and Tat)
are responsible for the efficient delivery and folding of glob-
ular and membrane proteins into their correct compartment
or into the membrane. They are all highly complex multi-
subunit membrane-bound machines, the understanding of
which is complicated – in the energy conserving membranes
of bacteria, mitochondria and chloroplasts – by the use,
in addition to ATP, of the PMF as an energy source. In
spite of a generation of research since their discovery in
the late 80s and 90s, the dynamic molecular mechanisms
underlying transport have yet to be described. Of all these
translocation systems, we understand most about the Sec
machinery. This is largely due to the availability of high-
resolution structures of the SecY complex, determined more
than a decade ago in a resting state [30] and a few years
later bound to the SecA motor ATPase [29]. In addition,
there has been a recent flurry of structures determined
by electron cryo-microscopy of the Sec complex engaged
with the SS and nascent translocation substrates [13,14,41].
However, these structural snapshots do not really address the
dynamic mechanism of protein translocation. Nevertheless,
they provide the necessary framework for the determination
of the dynamics of the system through a range of powerful
ensemble and single molecule biophysical strategies. Only
time (and further analyses) will reveal the nature of the
transport process at play. The mechanism may be one of the
possibilities described above, a hybrid of several of them, or
even an unexpected mechanism, yet to be revealed. So watch
this space!
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