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Abstract
The immense power of the immune system is harnessed in healthy individuals by a range of negative
regulatory signals and checkpoints. Manipulating these checkpoints through inhibition has resulted in
striking immune-mediated clearance of otherwise untreatable tumours and metastases; unfortunately,
not all patients respond to treatment with the currently available inhibitors of cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). Combinatorial studies using
both anti-CTLA-4 and anti-PD-1 demonstrate synergistic effects of targeting multiple checkpoints, paving
the way for other immune checkpoints to be targeted. Src homology 2 domain-containing protein tyrosine
phosphatase 1 (SHP-1) is a widely expressed inhibitory protein tyrosine phosphatase (PTP). In T-cells, it
is a negative regulator of antigen-dependent activation and proliferation. It is a cytosolic protein, and
therefore not amenable to antibody-mediated therapies, but its role in activation and proliferation makes
it an attractive target for genetic manipulation in adoptive transfer strategies, such as chimeric antigen
receptor (CAR) T-cells. This review will discuss the potential value of SHP-1 inhibition in future tumour
immunotherapy.

Introduction
Immunotherapy has ushered in a new era in cancer treatment.
Both the success of immune checkpoint inhibition strategies,
and the limitations, which include non-responsiveness of
some patients, as well as toxicity, has led to a search for new
checkpoint targets. At the same time, the rise of cell-based
immunotherapy, and an improved range of techniques for ge-
netic modification, has expanded the range of possible targets
to include intracellular checkpoints such as Src homology 2
domain-containing protein tyrosine phosphatase 1 (SHP-1).
In this brief review, the potential of SHP-1 in the context of
current immunotherapy strategies will be discussed.

Checkpoint inhibition as an anti-tumour
strategy
Until the start of the 21st century, all cancer treatment
strategies focused on targeting and directly killing cancer
cells. However, greater understanding of the regulation
of T-lymphocytes in the late 1980s and 1990s led to an
entirely new strategy for tumour treatment; exploiting T-cell

Key words: adoptive cell transfer, checkpoint inhibitors, protein tyrosine phosphatase inhibition,

SHP-1, tumour immunotherapy.

Abbreviations: CAR, chimeric antigen receptor; CTLA-4, cytotoxic T-lymphocyte-associated

protein 4, CD152; LAIR-1, leucocyte-associated immunoglobulin receptor-1; Lck, lymphocyte-

specific protein tyrosine kinase; PD-1, programmed cell death protein 1, CD279; PTP, protein

tyrosine phosphatase; PTPN6, protein tyrosine phosphatase, non-receptor type 6; SH2, Src

homology 2 domain; SHP-1, Src homology 2 domain-containing protein tyrosine phosphatase 1,

PTPN6; SSG, sodium stibogluconate; TALEN, transcription activator-like effector nucleases; TCR,

T-cell receptor; TIL, tumour-infiltrating lymphocyte; Zap70, zeta-chain associated protein kinase

70.
1 To whom correspondence should be addressed (email Watsonha1@cf.ac.uk).

regulatory molecules to ‘arm’ the immune system in order
to clear tumours. The first of these checkpoint inhibitors
to reach the clinic was an anti-cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) antibody, ipilimumab, which
first demonstrated effectiveness in the treatment of melanoma
in 2008 [1,2]. This was closely followed by therapies targeting
programmed death receptor-1 (PD-1) [3], the ligand for
which, programmed death ligand-1 (PD-L1), is widely
expressed by tumour cells [4,5]. These strategies have been
recently and comprehensively reviewed elsewhere [6,7], so
will not be discussed in further detail here; but their
importance in signalling a sea-change in cancer therapy
should not be underestimated.

Adoptive cell therapy
Although checkpoint inhibition seeks to improve the ability
of endogenous T-cells to clear tumours, adoptive transfer
can take one of two approaches; ex-vivo expansion of a
patients’ own tumour-infiltrating lymphocytes (TILs) which
are then infused back into the patient [8], or generation
of T-cells genetically modified to target the tumour, either
through introduction of tumour-specific T-cell receptors
(TCRs) or chimeric antigen receptors (CARs) [9,10], which
replace the antigen recognition domain of a TCR with the
epitope binding moiety of an antibody [11]. The former
strategy suffers from the same limitation as checkpoint
inhibition; it relies upon the existence of endogenous T-cells
specific for the tumour. As tumours develop from normal
tissue, many of their antigens are recognized as ‘self’, and
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those that are not are generally poorly immunogenic [12].
Mutations during tumorigenesis give rise to ‘neoantigens’;
novel antigens that can be targeted by the immune system
[13]. Incidence of neoantigens is associated with improved
response to checkpoint inhibitor therapy [14]. Unfortunately,
neoantigens are not equally distributed across cancer types
[15], meaning that either checkpoint inhibition or adoptive
transfer of endogenous TILs is unlikely to offer clinical
benefit to patients with low-neoantigen malignancies, which
include most haematological malignancies. In contrast, the
greatest success to date with CAR-T-cell therapy has been
with chronic lymphoid leukaemia, as circulating cancer cells
may be targeted by their expression of CD19 [16]. Like
any other cell-based therapy, CAR-T-cells are subject to
suppression by the tumour microenvironment, and also carry
the additional risk of on-target, off-tumour toxicity, including
normal B-cells expressing CD19. To address these limitations,
researchers are examining all aspects of CAR design, from
receptor affinity [17] to adding additional properties to CAR-
T-cells, such as cytokine production or release of neutralizing
scFvs directed against checkpoint inhibitors in so-called
‘armoured CAR-T-cells’ [18].

Src homology 2 domain-containing protein
tyrosine phosphatase-1 in T-cells
SHP-1 [protein tyrosine phosphatase, non-receptor type 6
(PTPN6)] is expressed by all mature haematopoietic lineages
and at low levels, in a different isoform, by endothelial
cells [19]. There is 95 % homology between human and
mouse SHP-1, making it amenable for study in pre-clinical
mouse models [20]. SHP-1 consists of three domains;
the N-terminal Src homology-2 (SH2) domain, the C-
terminal SH2 domain, and the C-terminal catalytic protein
tyrosine phosphatase (PTP) domain [21]. The N-terminal
SH2 domain is auto-inhibitory; binding to the PTP domain
until the C-terminal SH2 domain binds to a phosphopeptide
ligand, allowing a conformational change and the release of
autoinhibition [21]. Maximal phosphatase activity is achieved
only when both SH2 domains are engaged [22]. Given this
requirement, it is likely that SHP-1 interacts with proteins
of the inhibitory-receptor superfamily (IRS) containing
immunoreceptor tyrosine-based inhibitory motifs (ITIMs)
(I/V/LxYxxL/V) within their cytoplasmic tails [23]. It has
been shown that SHP-1 constitutively interacts with ITIM-
containing leucocyte-associated immunoglobulin receptor-
1 (LAIR-1) [24], what is less clear is whether it directly
interacts with PD-1, which also contains a cytoplasmic ITIM
domain [25]. Studies in human CD4 T-cells and JURKAT
cells have demonstrated co-immunoprecipitation of SHP-1
and PD-1 [26,27], however, a recent study in human CD8
T-cells found that SHP-1 and PD-1 acted independently to
inhibit T-cell activation; with PD-1 preferentially inhibiting
T-cells with the highest affinity TCRs, while SHP-1-mediated
inhibition increased incrementally as TCR affinity increased
[28]. Furthermore, only SHP-2 has been demonstrated to

interact directly with PD-1 in activated T-cells [29]. CTLA-4
does not contain any ITIMs, but does have cytosolic tyrosines
that could represent potential binding sites for SHP-1,
however, although other PTPs have been shown to associate
with these cytosolic tyrosines, there is no direct evidence
for SHP-1 interaction with CTLA-4 [30]. To date, no
combinatorial studies of SHP-1 inhibition together with PD-
1 or CTLA-4 inhibition have been conducted, however, the
studies discussed above, in particular the work by Hebeisen
et al. [28], suggest that such combinations are more likely to
be synergistic than redundant in their anti-tumour effects.

Other than LAIR-1, little is known for certain about
SHP-1 binding partners in T-cells, and there is similar
debate regarding its substrates, although zeta-chain associated
protein kinase 70 (Zap70) [31], lymphocyte-specific protein
tyrosine kinase (Lck) [32], phosphoinositide 3-kinase (PI3K)
[33], Vav [34] and TCRζ [35] are all strongly implicated
[36] (Figure 1). However, the functional effect of SHP-1,
or, rather, its absence, on T-cells is better understood. In
the absence of SHP-1, CD8 T-cells form more stable and
durable synapses with antigen presenting cells (APCs) [37].
This leads to reduced activation thresholds and increased
proliferation [38], which is beneficial for any kind of adoptive
transfer strategy for two reasons: firstly, numbers of T-
cells available for transfer are often limited, especially where
genetic modification is involved; and, secondly it is known
that the balance of regulatory T-cells to effector T-cells is
key in tumour progression [39], so any modification that can
bias towards increased effector T-cells is likely to improve
treatment efficacy (Figure 2). It is worth noting that SHP-
1 has also been shown to be inhibitory to T regulatory
cells [40], and therefore inhibition of SHP-1 in these cells
leads to increased suppressor function. As with CD8 T-cells,
this effect is attributed to increases in TCR–APC conjugate
formation and duration. Specific deletion of SHP-1 in all
CD4 T-cells via a floxed Shp1fl/fl CD4-cre system in mice
demonstrated a key role for SHP-1 in negatively regulating
the responsiveness of CD4 T-cells to interleukin-4 signalling,
and therefore maintenance of a TH1 phenotype [41]. Deletion
of SHP-1 in other haematopoietic lineages in mouse models,
such as B-cells, neutrophils and dendritic cells, is associated
with a variety of pathologies [42–45], although SHP-1− / −

CD 8 T-cells have not been linked to any pathological effects,
to date.

A natural model
In 1965, a spontaneous recessive mutation was observed
among the mice in Jackson Laboratories, and was given the
name ‘motheaten’ due to the marked skin lesions observed
on homozygous animals [46]. Motheaten mice die at 3–
4 weeks of age, but in 1985 a new mutant mouse was
described that had a mutation in the motheaten locus, but
survived up to 9 weeks of age; this mouse was dubbed
‘motheaten viable’ [47]. It was not until 1993 that these
mutations were associated with a haematopoietic phosphatase
[48,49], later named SHP-1 by consensus. The motheaten
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Figure 1 SHP-1 mediated inhibition of TCR signalling

SHP-1 is constitutively associated with the inhibitory receptor LAIR-1, which, in turn, is constitutively phosphorylated by Lck

[74], although SHP-1 may also be activated by other ITIM-containing inhibitory receptors. Activation of SHP-1 allows it to

inhibit antigen-induced TCR signalling either through direct dephosphorylation of the TCRζ chain, or dephosphorylation of

downstream adaptor proteins such as Lck and ZAP70. Activating phosphate groups are shown as stars.
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Figure 2 Lowered activation thresholds, increased duration of interaction with antigen presenting cells (green) and increased

expansion of SHP-1− / − CD8 T-cells are beneficial in tumour therapy

(1a) Tumour antigens (grey) are low affinity and poorly immunogenic, and offer limited stimulation to naı̈ve T-cells (purple).

(1b) Low numbers of tumour specific effector T-cells (red) are insufficient to control tumour growth. (2a) SHP-1− / −

T-cells have lower activation thresholds, therefore can be stimulated by low-affinity antigens. (2b) In response to antigen

stimulation SHP-1− / − T-cells proliferate more than WT T-cells, leading to increased numbers of tumour specific effector

T-cells, and predicted control of tumour growth.
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mouse suffers a range of pathologies, including myeloid-
driven skin lesions, interstitial pneumonitis (usually fatal),
and a range of haematological abnormalities; polyclonal
activation of B-cells, decreased NK cell activity, haemolytic
anaemia, decreased dermal dendritic cells, as well as the

previously described hyperproliferative T-cells [50,51]. The
short lifespan of these animals and the range of multifactorial
immunopathologies make them difficult to use effectively in
the study of T-cell function. However, the extent of immune
dysregulation in these animals indicates the importance of
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SHP-1 in the regulation of the immune system, and further
suggests that specific targeting of SHP-1 in individual cell
populations might be a safer approach in patients, rather
than global inhibition, as in anti-CTLA-4 and anti-PD-1
therapies.

SHP-1 abrogation in cancer therapy
A number of strategies to exploit the benefits of SHP-
1 abrogation have been attempted to date. In pre-clinical
studies, adoptive transfer of SHP-1 knockout T-cells has
been shown to be beneficial in a model of leukaemia [52],
whereas two phase I clinical trials have been taken place to
assess the safety of using systemic treatment with sodium
stibogluconate (SSG), a licensed treatment for leishmaniasis
that is also an active-site inhibitor of SHP-1 and the related
SHP-2, as a cancer therapy [53,54]. A further pre-clinical
study has looked at developing a new, orally-bioavailable
(SSG must be infused intravenously) SHP-1 inhibitor; a
small-molecule, aromatic compound denoted as tyrosine
phosphatase inhibitor 1 (TPI-1) by the authors [55]. In
this study, TPI-1 was found to be ∼58 times as effective
as SSG in vitro, and elicited an anti-tumour effect against
4-day established B16 melanomas in vivo, where SSG
failed to have any effect. NSC-87877 is a small molecule
competitive inhibitor of SHP-2, which is also inhibitory
to SHP-1 [56] and is being explored as an anti-tumour
agent, however this is due to its inhibitory effects on dual
specificity protein phosphatase 26 (DUSP 26), which is
overexpressed in neuroblastoma, rather than as a result of
SHP-1 inhibition [57]. Suramin is another anti-parasitic agent
that has been found to mediate active-site inhibition of a
range of PTPs, and is therefore being investigated as an anti-
tumour agent, however, its wide spectrum of target PTPs
puts it beyond the scope of this review [58]. Historically,
active-site-directed inhibitors of PTPs have been challenging
due to the problem of creating cell membrane-permeable yet
highly negatively charged compounds, however, recently, a
cryptic allosteric inhibition site has been successfully targeted
in SHP-2 [59], which represents a new strategy for PTP
inhibition that might improve the clinical applicability of PTP
inhibition.

In the study by Stromnes et al. [52], the authors used
an Lck-driven cre to knockout floxed SHP-1 in mature
T-cells. This system was used in preference to the SHP-
1null motheaten mouse, in order to avoid any confounding
influence of other aberrantly activated SHP-1null immune
cells [60] on the maturation of the T-cells. In order to mimic
clinical adoptive transfer strategies, T-cells were subject to
three rounds of in vitro antigen stimulation prior to transfer.
Although this system might appear to fail to take advantage of
the increased antigen-dependent proliferation of naive SHP-
1null T-cells described by Sathish et al. [37,61], the authors
observed increased proliferation of transferred effector T-
cells in response to tumour in vivo, reduced apoptosis and
improved survival of SHP-1− / − T-cells, and, ultimately
improved clearance of leukaemia. This demonstrates that

abrogation of SHP-1 is beneficial in effector T-cells, not just
in naive T-cells, and therefore knocking out SHP-1 in in vitro-
activated, genetically modified T-cells would still add value
to adoptive transfer strategies.

To date, although carried out in cancer patients, clinical
trials of small-molecule SHP-1 inhibitors remain restricted
to phase I dosing studies, and therefore anti-tumour effects,
although measured, were not the primary purpose of the
studies. In the event, no clinically measurable anti-tumour
effects were observed in either study [53,54]. Although
not the purpose, this is disappointing and does bring into
question the effectiveness of SSG administration as an anti-
cancer strategy. No phase II studies of small-molecule SHP-1
inhibition have been completed. Evaluation of toxicity of SSG
was somewhat limited in both studies due to the combination
of SSG with interferon and/or chemotherapy, and therefore
where severe and/or life threatening adverse effects were
observed (in up to 68 % of patients), it was difficult to
establish which treatment was responsible. Dose-limiting
toxicities observed included pancreatitis, bone marrow
suppression, fatigue, lipase elevation and gastrointestinal
upset. Not observed was the fatal cardiac toxicity seen
in 5–7 % of leishmaniasis patients treated with SSG [62].
Both studies concluded that SSG treatment was well
tolerated.

Interestingly, especially when considering global SHP-
1 inhibition with agents such as SSG or TPI-1, SHP-1
expression is altered in a range of malignancies; up-regulated
in breast and ovarian cancers [63,64], and gene-silenced in
lymphomas, leukaemias and colorectal cancers [65–67].

Future strategies
The disappointing performance of SSG/TPI-1 as an anti-
cancer agent in both the pre-clinical and clinical studies
described above suggests that the adoptive transfer approach
of Stromnes et al. [52] might be the most promising avenue
for exploitation of SHP-1 inhibition for tumour therapy. The
cytosolic nature of SHP-1, and the difficulty in identifying
inhibitors that will not target SHP-2 and other PTPs,
means that genetic manipulation would be the best strategy
for translational studies. There are currently a range of
different techniques available for genetic manipulation that
have been utilized in various adoptive transfer and CAR-T-
cell approaches. A recent study used zinc finger nucleases
via RNA electroporation to knockout PD-1 in TILs on a
clinical scale in order to treat metastatic melanoma [68],
however, limited success meant only in vitro evaluation of the
modified cells was possible. In our own lab, we are currently
investigating a zinc finger nuclease approach for ablating
SHP-1 in human CD8 T-cells for tumour therapy. In the
past, lenti- and retrovirally mediated gene transfer strategies
have been popular, but difficulties with transduction of T-
cells has led to electroporation of either DNA or RNA
becoming the method of choice. CAR-T-cell therapies have
optimized a number of genetic modification approaches,
including the Sleeping Beauty transposon system [69],
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clustered regularly interspaced short palindromic repeats
(CRISPR) [70] and transcription activator-like effector
nucleases (TALEN) [71]. These approaches are reviewed in
more detail elsewhere [72,73]. However, the range of clinically
applicable gene transfer techniques available today mean that
the additional knockout of a molecule like SHP-1 from
T-cells already undergoing genetic modification becomes a
much more straightforward proposition, making it more
likely that the beneficial anti-cancer properties of SHP-
1− / − T-cells can be exploited in the clinic in the near
future.
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