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Abstract
PABPs [poly(A)-binding proteins] bind to the poly(A) tail of eukaryotic mRNAs and are conserved in species
ranging from yeast to human. The prototypical cytoplasmic member, PABP1, is a multifunctional RNA-
binding protein with roles in global and mRNA-specific translation and stability, consistent with a function
as a central regulator of mRNA fate in the cytoplasm. More limited insight into the molecular functions
of other family members is available. However, the consequences of disrupting PABP function in whole
organisms is less clear, particularly in vertebrates, and even more so in mammals. In the present review, we
discuss current and emerging knowledge with respect to the functions of PABP family members in whole
animal studies which, although incomplete, already underlines their biological importance and highlights
the need for further intensive research in this area.

Introduction
All aspects of life require tightly regulated gene expression
and recent studies have highlighted both the complexity
and importance of post-transcriptional control mechanisms.
RNA-binding proteins play a key role in exerting and
co-ordinating such regulation. One class of RNA-binding
proteins that regulate numerous aspects of eukaryotic mRNA
fate comprises the PABPs [poly(A)-binding proteins].
Both PABPNs (nuclear PABPs) and PABPCs (cytoplasmic
PABPs) bind the poly(A) tail, but consist of very distinct
domains (Figure 1A) and have different steady-state
intracellular distributions and functions [1–3]. The present
review discusses metazoan PABPCs (referred to hereafter
as PABPs), which vary in number between organisms
(Figure 1B). PABP1, the prototypical member, has four N-
terminal RRMs (RNA-recognition motifs), a linker region
and a highly conserved PABC (PABP C-terminal) domain
(Figure 1A). Where studied, PABPs show a predominantly
diffuse cytoplasmic distribution [4,5], but can be enriched
at sites of localized translation, e.g. neuronal dendrites [6]
or leading edges of migrating fibroblasts [7]. At least some
family members shuttle to and from the nucleus [4,8] and
can, during cell stress, accumulate in the nucleus [5,8] or
in cytoplasmic foci, e.g. stress granules [5,9]. Studies of
the molecular functions of PABPs have mainly focused
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on PABP1 (also called PABPC1) and have mostly used
reporter mRNAs either in mammalian cell-free extracts/cell
lines or in Xenopus laevis oocytes. This has revealed
multiple functions that are reviewed in [1–3,10,11] (Figure 2).
Briefly, the best characterized function of poly(A)-tail-bound
PABP1 is enhancing translation initiation by interacting
with translation initiation factors bound at the 5′-end of
the mRNA (Figure 2A): this is proposed to stabilize their
interaction with mRNA, thereby enhancing the recruitment
of ribosomal subunits. Although considered a ‘global’ effect,
the extent to which translation of individual mRNAs is
stimulated can be influenced by regulation of their poly(A)-
tail lengths. When bound (directly or indirectly) to sites other
than the poly(A) tail, PABP1 can also activate or repress
translation in an ‘mRNA-specific’ manner (Figures 2F and
2G) depending on the location of its alternative binding sites
and the proteins with which it interacts [10].

PABP1 also has multiple less well-characterized roles
in mRNA turnover [11,12]. Of these, its best known
role is protecting the poly(A) tail from deadenylation
[poly(A) removal], the first and rate-limiting step in mRNA
turnover (Figure 2B). Paradoxically, PABP1 also recruits
deadenylases to mRNAs (Figure 2B) and has been suggested
to co-ordinate translational termination with deadenylation,
thereby regulating mRNA lifespan. Similar to translation,
PABP1 has mRNA-specific roles in regulating mRNA
stability (Figure 2C), either as part of regulatory complexes
bound to sites within mRNAs or by interacting with
stabilizing or destabilizing complexes when bound to the
poly(A) tail. PABP1 is also involved in miRNA-mediated
translational repression and/or deadenylation (Figure 2E) and
in discriminating mRNAs which should undergo nonsense-
mediated decay due to the presence of premature stop codons
[3,11] (Figure 2D). Unlike their Saccharomyces cerevisae
counterpart, mammalian PABPs do not participate in mRNA
export [5].
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Figure 1 Relatedness and domain organization of PABP family

members

(A) Domain organization of PABPs. Top: vertebrate PABPC1, PABPC4,

ePABP, tPABP (mammalian-specific), D. melanogaster dPABP and C.

elegans/C. briggsae PAB-1 and PAB-2 (all predominately cytoplasmic).

Middle: mammalian-specific PABPC5 (cytoplasmic). Bottom: PABPN1

(nuclear) and ePABP2 (cytoplasmic). Linker, proline/glutamine-rich

variable linker region. (B) Phylogenetic tree of PABPC family proteins,

rooted to human hnRNPA1 (heterogeneous nuclear ribonucleoprotein

A1), an RRM-containing RNA-binding protein. Cb, C. briggsae; Ce, C.

elegans; Dm, D. melanogaster; Hs, Homo sapiens; Mm, Mus musculus;

Xl, X. laevis.

The molecular functions of the other PABP family
members are less well-characterized, but those of two
vertebrate-specific PABPs (Figure 1), ePABP (embryonic
PABP, also known as ePAB and PABPC1L) and PABP4
(also known as iPABP and PABPC4) have been examined
in X. laevis egg extracts and oocytes (Table 1). Germ
cells and early embryos undergo periods of transcriptional
quiescence and are therefore heavily reliant on changes in
mRNA translation which are often associated with dynamic
poly(A)-tail length regulation in the cytoplasm: shortening
(deadenylation) and extension (polyadenylation) lead to
translational repression and activation respectively [13].
Cytoplasmic polyadenylation facilitates PABP recruitment
and occurs in multiple cell types across metazoans (e.g.
oocytes, male germ cells, early embryos and neurons [13]).
All three X. laevis PABPs can stimulate poly(A)-dependent
and mRNA-specific translation [14–16], both PABP1 and
ePABP protect mRNAs from ‘default’ deadenylation [17,18]
and ePABP can enhance cytoplasmic polyadenylation [19]
and retard deadenylation driven by AREs (AU-rich elements)

[18]. Although the ability of X. laevis PABP4 to regulate
deadenylation has not been studied, mammalian PABP4
shows preference for AU-rich sequences in addition to
poly(A) [20] and enhances translation and stability of ARE-
containing mRNAs in extracts and/or cell lines [21,22]. Little
is known about the functions of the two mammalian-specific
PABPs, tPABP (testis-specific PABP, also known as PABPC2
and PABPC3) and PABP5 (PABPC5), which lacks the linker
region and the PABC domain (Figure 1A). Finally, the
cytoplasmic ePABP2 (or PABPN1-like) protein is outside
the scope of the present review because it resembles PABPN
[23,24] (Figure 1A).

In the present review, we describe our current state of
knowledge regarding PABP function in whole organism
studies in animals, but do not address studies of plants, yeast,
viral infection or parasites [3,12,25–28].

Invertebrates

Drosophila melanogaster
D. melanogaster encodes one PABP1 homologue, dPABP (or
PABP55B) whose molecular functions are incompletely char-
acterized (Table 1), but which appears essential for viability
since compound heterozygous deletions have an embryonic
lethal phenotype at an unspecified stage [29]. Other studies,
mostly using different P-element (transposon) insertions at
the pAbp locus [29–34], have identified a range of phenotypes
(described below). Although classified as hypomorphs (i.e.
reduced gene activity or function), information concerning
their actual effect on PABP function/expression (all but one
lie outside the pAbp ORF) is lacking unless stated otherwise.
Therefore the extent of dPABP insufficiency associated with
these phenotypes remains unclear. Similarly, although some
studies have used multiple mutant alleles, transgene rescue
experiments to eliminate off-target effects are lacking, unless
indicated otherwise.

Nonetheless, several studies suggest dPABP is import-
ant within the germline and following fertilization. D.
melanogaster developing oocytes are supported by nurse
cells that provide nutrients, RNAs and proteins. Localized
translation of mRNAs [e.g. bcd (bicoid), osk (oskar), nos
(nanos) and grk (gurken)] following transport from the
nurse cells to particular sites within the oocyte, results in
protein gradients that establish embryonic body axes and
the germline. Correct spatiotemporal translation of these
mRNAs requires multi-protein complexes to co-ordinate
their localization, translational repression and activation [35].

Homozygous or compound heterozygous pAbp muta-
tions, one of which was rescued by a dPABP transgene [34],
results in arrest of oogenesis at stage 3 [31], or stages 5–6
(of 14 stages) [34], demonstrating an early requirement for
dPABP during this process. Further analysis revealed that
oocyte growth and positioning and egg chamber packaging
were affected as mutant egg chambers contained abnormally
small mis-positioned or multiple oocytes. Nurse and follicle
cell development was also affected.
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Figure 2 Molecular functions associated with PABP1

(A) PABP1 enhances global translation by binding to the poly(A) tail and interacting with factors at the mRNA 5′-end to

recruit ribosomal subunits. (B) PABP1 stabilizes mRNAs by blocking access of deadenylases to the poly(A) tail, but also

recruits deadenylases to the mRNA. This may be linked to translational termination. (C) An example of an mRNA-specific

role in stability where PABP1 interaction with 3′-UTR-binding proteins blocks deadenylation and endonucleotic cleavage

within the 3′-UTR. (D, panel i) PABP1 plays a role in correct termination at stop codons ensuring that the nonsense-mediated

decay pathway is not activated. (D, panel ii) PABP1 does not participate in termination at premature termination codons

(PTCs), termination is aberrant and mRNA decay ensues. (E) PABP1 enhances miRNA-mediated translational repression and

deadenylation via its interaction with the miRNA-containing RISC complex. (F) An example of PABP1 acting in mRNA-specific

translational repression when bound as part of a 5′-UTR repressive complex that blocks ribosome assembly. (G) PABP1

can act as an mRNA-specific activator when recruited to the 3′-UTR by other RNA-binding proteins or regulatory elements.

Table 1 summarizes functions shown for different family members in the species discussed in this Figure.

Some insight into dPABP function in these early oocytes
comes from its association and co-localization with a
protein complex that is involved in the microtubule-mediated
transport of osk, bcd and grk mRNAs from nurse cells to
the oocyte [35]. This association may be indirect as it is
RNA-dependent, but studies in oocytes containing different
compound heterozygous pAbp mutations show that dPABP
is essential for posterior accumulation of osk [but not grk
and bic (bicaudal)-D] mRNA [34] and for the localization
of Staufen protein, which is interdependent with that of osk
mRNA [36]. The specificity of dPABP for osk mRNA may
be due to the presence of adenine-rich tracts within the osk
mRNA 3′-UTR which bind dPABP in vitro [34].

Although a direct role for dPABP in the mRNA
localization process cannot be ruled out, the failure to
accumulate localized osk mRNA may be attributable to a
role of dPABP in maintaining osk mRNA stability, since
osk mRNA abundance is reduced in oocytes with different
compound pAbp-heterozygous mutant alleles [34]. This
stabilizing function may also explain why dPABP deficiency
causes osk haploinsufficiency and why reducing pAbp to one
copy suppresses patterning defects caused by anterior mis-
localization of osk mRNA in bic-D mutants [34].

Subsequent to this early role, dPABP appears to be
required for the spatiotemporal control of other mRNAs that
establish embryonic protein gradients, e.g. via localized Grk
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Table 1 Molecular functions of PABPs

Functions are shown in italics where direct evidence is absent and in bold where substantive or multiple lines of evidence are available. Indirect or

contradictory experimental evidence is shown in italics. Protein–protein interactions and RNA binding have not been included for brevity. PABPs are

only listed where evidence is available.

(a) Invertebrates

PABP Molecular function Evidence

D. melanogaster Enhances translation (global and/or mRNA-specific) • Polysome association [72]

dPABP • Depletion or depletion/add-back experiments with reporter

mRNAs [39,73,74]

miRNA-mediated regulation • Depletion/add-back experiments with reporter mRNAs [74]

• Reporter assays using mutants that impede dPABP protein

interactions [75,76]

• Overexpression experiments using tethering assays [75]

mRNA surveillance • Reporter and tethering assays [77]

• Knockdown effects on reporter and endogenous mRNA [77]

mRNA-specific stability • Effect of pAbp hypomorphs on mRNA absundance [34]

C. elegans

PAB-1

Enhances translation initiation • Polysome association [78]

(b) Non-mammalian vertebrates

PABP Molecular function Evidence

X. laevis

PABP1 Enhances translation (global and/or mRNA-specific) • Tethering assays [14]

• Knockdown studies with metabolic labelling [15]

Inhibits deadenylation • Overexpression studies [17]

ePABP Enhances translation (global and/or mRNA-specific) • Polysome association [16]

• Tethering assays [16,19]

• Knockdown studies with metabolic labelling [14–16]

Cytoplasmic polyadenylation • Sequestration/add-back with endogenous mRNAs [19]

Inhibits deadenylation • Depletion effects on reporter mRNAs [18,79]

PABP4 Enhances translation (global and/or mRNA-specific) • Polysome association [15]

• Tethering assays [15]

• Loss of polysomes following knockdown [15]

(c) Mammals

PABP Molecular function Evidence

PABP1 Enhances translation (global and/or mRNA-specific) Extensively reviewed [1–3,10]

mRNA turnover/mRNA-specific stability Recently reviewed [11]

mRNA surveillance Recently reviewed [3,11,80]

miRNA-mediated regulation Recently reviewed [3,75]

mRNA-specific translation repression Recently reviewed [10,81]

ePABP Cytoplasmic polyadenylation • Effect of knockout on endogenous mRNAs [64]

tPABP Enhances translation (global and/or • Slightly augments reporter mRNA translation in vitro,

mRNA-specific) but contradicted by lack of polysome association [69]

PABP4 Enhances translation (global and/or • Slight augmentation of reporter mRNA translation [21]

mRNA-specific) • Polysome association [82]

mRNA-specific stability • Effect of knockdown on endogenous mRNAs [22]
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synthesis. Eggs from several homozygous and compound
heterozygous pAbp hypomorphs display patterning defects
suggestive of reduced dorso-anterior Grk protein levels [31],
and heterozygous pAbp hypomorphs exacerbate patterning
defects in grk mutants [31]. Interestingly, dPABP can be co-
isolated with Cup and Encore (Enc), proteins that function in
grk mRNA localization and either its translational repression
or activation respectively [31,37]. pAbp and cup mutants lay
eggs with opposite patterning defects (‘ventralized’ compared
with ‘dorsalized’ respectively), whereas a heterozygous pAbp
hypomorph enhances the ventralized and collapsed egg
phenotypes of enc mutants [31]. This suggests that dPABP
may antagonize Cup-mediated repression and, similar to Enc,
is required to promote grk mRNA translation.

dPABP may also contribute to translational repression
of cad (caudal) mRNA [33] by a Bcd-containing complex
which establishes the posterior–anterior gradient of Caudal
[38]. Bin-3 (bicoid-interacting protein 3) is also implicated
in this repression and the levels of embryonic lethality
of a bin3 bcd double mutant are enhanced by a pAbp
heterozygous hypomorph [33], but it is not clear whether
dPABP contribution to cad mRNA repression is direct.

A later role in determining body morphology is suggested
by studies of wing size. Heterozygous pAbp hypomorph
flies or those overexpressing an inhibitor of translation that
sequesters dPABP, called dPaip2 (D. melanogaster PABP-
interacting protein 2), in wing-imaginal discs have reduced
wing size [39]. Importantly, co-overexpression of dPABP
with dPaip2 rescues wing cell number and size [39].

In addition to affecting oogenesis and body pattern,
dPABP is also required for spermatogenesis [30,32] as several
compound heterozygous pAbp mutant flies are male sterile
and display aberrant meiosis (only undergoing one meiotic
division), spermatid elongation and/or cytokinesis [30,32].
Although the molecular events leading to these defects are
unknown, the pAbp meiotic phenotype partially overlaps
with that of Larp (La-related protein), a factor thought
to regulate mRNA stability in Caenorhabditis elegans and
translation of certain mRNAs in mammalian cells [40–42],
which interacts biochemically and genetically with dPABP
[30].

Many mRNA-binding proteins that function in the
germline also appear to be important in neurons. Neurons
pass signals to other cells via synapses and localized
translation at these sites is thought to regulate synaptic
plasticity [43]. Aggregates containing dPABP and eIF4E
(eukaryotic initiation factor 4E) coincide with polyribosome
clusters within subsynaptic compartments of larval NMJs
(neuromuscular junctions), posited sites of localized transla-
tion [29]. Mutants that increase synaptic activity, or larvae
overexpressing pAbp mRNA show increased occurrence
of subsynaptic dPABP/eIF4E aggregates, altered levels of
some synaptic proteins, significantly larger NMJs and more
efficient neurotransmission [29], consistent with modified
subsynaptic translation. However, similar observations were
made with reduced pAbp mRNA levels (heterozygous pAbp
hypomorph) and neither increased nor decreased pAbp

mRNA levels were reflected in dPABP protein levels [29],
making the observed alterations in dPABP/eIF4E aggregates
and synaptic activity difficult to explain.

Studies of dFMR1, the D. melanogaster homologue of
FMRP (fragile-X mental retardation protein), also link
dPABP to synaptic plasticity. FMRP is an RNA-binding
protein that regulates mRNA localization, translation and
stability [44] and is important for cognition. dFMR1
is required for long-term memory [45] and a genetic
screen for genes involved in dFMR1-mediated translational
repression identified pAbp [46]. dPABP co-localizes with
dFMR1-positive neuritic RNPs (ribonucleoproteins) and its
overexpression inhibits dendritic branching, suggestive of
a function in translational repression [46], but this activity
awaits confirmation.

Interestingly, the phenotypes of several D. melanogaster
models of human neurodegenerative diseases are also affected
by dPABP. For instance, neurodegeneration in SCA3 (spinal
cerebellar ataxia 3) models is exacerbated by heterozygous
pAbp deletion and reduced by dPABP overexpression [47].
Similarly, PABP1 accumulates in cytoplasmic inclusions in
motor neurons from ALS (amyotrophic lateral sclerosis)
patients [48] and siRNA-mediated dPABP knockdown in fly
models of ALS suggests it is required for inclusion formation
[48].

C. elegans and Caenorhabditis briggsae
C. elegans and C. briggsae encode two PABPCs, PAB-1 and
PAB-2 ([49]; WormBase) whose molecular functions largely
await characterization (Table 1). In C. elegans, individual pab-
1 (detailed in [50]) or pab-2 knockdown leads to limited
somatic defects such as abnormally protruding vulva (high
and low penetrance respectively; also seen in a pab-1 nonsense
mutation), low penetrance ruptured vulva, and flaccid body
morphology (pab-1 only) [49,51].

In both species, pab-2 is X-chromosomal. Consistent
with germline X-chromosome inactivation, its knockdown
does not affect C. elegans fertility [49]. However, despite
conservation of chromosome silencing [52], knockdown
in C. briggsae drastically affects embryo number and
mortality [49], which is suggestive of reproductive and/or
developmental defects.

In contrast, pab-1 is essential for fertility in both species
[49,51,53–56]. C. elegans is a hermaphrodite, which first
makes sperm and then switches to oogenesis, and knockdown
at different stages of post-embryonic development revealed
PAB-1 is required throughout gametogenesis. Even late-stage
PAB-1 depletion is deleterious, leading to defective oogenesis,
high embryonic death and infertility of surviving progeny
[54]. This suggests that PAB-1 is likely to regulate mRNAs
that function at different stages of germline development [54].
PAB-1 is present in, and reportedly required for the formation
of, P-granules [54], germ-cell specific cytoplasmic foci, which
are considered centres of post-transcriptional regulation
as they are rich in RNA-binding proteins and mRNA
[57]. Although P-granules are implicated in both germline
proliferation and gametogenesis, it is unclear whether the
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association of PAB-1 with these foci accounts for its essential
germline function.

Germ cell ablation can lead to longevity and gigantism
[58,59] and pab-1 nonsense alleles increase lifespan 1.3–1.5-
fold [49,53] and body volume 1.4-fold [49], which may be
a consequence of the described germline defects. Curiously,
pab-2 deletion alters relative lifespan when worms are fed on
different bacterial species [60].

Vertebrate phenotypes associated with
loss of PABP function

X. laevis
X. laevis PABPs exhibit distinct distributions: in adult tissues,
PABP1 is widely expressed albeit at variable levels [16,61],
and PABP4 mRNA is widely distributed [15], whereas
ePABP is restricted to the gonads [16,61]. In oocytes and
early embryos, ePABP is the predominant PABP [15,16,18].
Changes in ePABP phosphorylation during oocyte mat-
uration, when fully grown oocytes become fertilization
competent, suggest regulation of its activity coincident
with changes in the poly(A)-tail length and translation
of many mRNAs [19]. Oocyte maturation is impeded by
ectopic xPAIP2 (X. laevis PABP-interacting protein 2)-
mediated PABP sequestration which blocks the cytoplasmic
polyadenylation of mRNAs whose translational activation is
required for maturation. Rescue by overexpression of ePABP,
but not a form in which several phospho-residues have been
mutated, demonstrates the importance of ePABP and these
phosphorylations for oocyte maturation [19].

Each PABP is essential for X. laevis embryonic develop-
ment and viability [15]. Morpholino-mediated knockdown
of PABP1 leads to a range of morphological phenotypes
in tadpoles (e.g. abnormal development of the eye, cement
gland, tail and fin, and body curvature), problems with
movement and embryonic death by stage 30/31 (out of
66 developmental stages) [15]. ePABP knockdown results
in similar morphological and movement defects, but,
surprisingly, death occurs later, by stage 35, perhaps due
to the higher levels of ePABP in early embryos delaying
effective knockdown [15]. In contrast, PABP4 knockdown
results mainly in anterior morphological defects (e.g. cephalic
and ventral oedema, malformation of the head, poor eye
development, and digestive tract deformities) and abnormal
swimming motions. PABP4 phenotypes become apparent
later than those of PABP1 and ePABP- and PABP4-deficient
embryos do not die until stage 50 [15]. Importantly, the
respective phenotypes were recapitulated with multiple
morpholinos and could be effectively rescued [15].

For each of these knockdowns, the developmental defects
were accompanied by significant decreases in global protein
synthesis, suggesting a potential molecular basis for the
phenotypes [15]. However, despite this commonality, cross-
rescue experiments showed that neither ePABP nor PABP4
could fully rescue PABP1 knockdown, indicating functional
differences must also exist between individual PABP family

members, which domain-swap experiments showed to be
conferred by multiple domains [15]. The ability of all three
PABPs to stimulate global translation [15] (Table 1) suggests
that their non-redundant functions may relate to individual
roles in regulating mRNA-specific translation or mRNA
decay.

Mouse
Insight into the phenotypic consequences of loss of PABP
function in mammals is only available for Epab. Murine Epab
mRNA is only present in male and female germ cells and
one- and two-cell stage embryos [62,63]. In contrast with
ePABP-deficient X. laevis, Epab− / − mice display no growth
or developmental abnormalities, a difference that may reflect
reduced reliance on post-transcriptional regulation in mouse
embryos since zygotic transcription begins at the two-cell
stage in mice rather than at mid-blastula transition in X. laevis.

Epab− / − females, but not males, are sterile [64,65]. In
mammals, hormonal signals trigger the development and
maturation of oocytes within follicles that progress through
a series of developmental stages and contain somatic cells
that respond to and support the growing oocyte. Epab− / −

mice have normal oestrus and normal follicle numbers at
all stages, with the exception of secondary follicles which
are overly abundant, but their oocytes fail to mature either
in vivo or in vitro. Similar to what was described previously
for X. laevis [19], this maturation defect appears to be due,
at least in part, to abrogated cytoplasmic polyadenylation,
resulting in reduced expression of proteins required for
oocyte maturation [64]. However, ePABP may also be
required earlier in oogenesis, since injection of Epab mRNA
into fully grown Epab− / − oocytes failed to rescue maturation
in vitro [64].

Following ovulation, follicles become corpora lutea which,
in superovulated Epab− / − mice, show increased retention
of oocytes, indicative of defective ovulation [64]. This
phenotype appears to result from somatic cell defects in the
follicle which are likely indirect as these cells do not express
Epab [64].

Cell-based models of red blood cell
maturation
In a recent study, a potential role for mammalian PABP4
in red blood cell maturation was identified [22]. Mature
red blood cells lack a nucleus making their terminal
differentiation highly dependent on post-transcriptional
control; this can be modelled by dimethylsulfoxide treatment
of MEL (lymphoma-derived murine erythroleukaemia) cells.
Intriguingly, shRNA-mediated depletion of PABP4 in MEL
cells increased or decreased the abundance of limited mRNA
subsets and hindered terminal MEL cell differentiation [22].
Although the underlying mechanism requires clarification,
it was suggested that AREs in some of these mRNAs may
aid PABP4 binding to impede their rapid decay following
deadenylation.
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Perspectives
Although recent work has provided fascinating insight
into the complexity of the biological processes in which
PABP family members are involved, their molecular multi-
functionality suggests that we have only scratched the
surface. Indeed, even in invertebrates where PABPs are
already implicated in diverse phenotypes, they may be
involved in additional processes, e.g. circadian rhythm and
transposon silencing [66–68]. Our knowledge is more limited
in vertebrates, which encode a greater diversity of PABPs,
with only their roles in early development and oogenesis
having been explored. In mammals, the critical role of ePABP
in oocytes is conserved, but information on other PABPs is
not available although extrapolating from non-mammalian
studies suggests that mammalian PABP1 may be essential.
It remains to be determined whether mammalian PABP4
plays an analogous role to its X. laevis counterpart in
development and whether its effects on mammalian erythroid
differentiation are recapitulated in vivo. There is no insight
into the roles of tPABP and PABP5 from cell lines or other
models, but tPABP is only expressed in a subset of male germ
cells, indicating its function is restricted to the male germline
[69], where it may be redundant with PABP1. Consistent with
this idea, tPABP interacts with translation factors and can
stimulate reporter mRNA translation in vitro [69] (Table 1).
However, tPABP appears not to be polysome-associated
and discrepancy exists as to whether its distribution within
cytoplasmic foci called chromatoid bodies is distinct from
that of PABP1 [69,70]. Little is known about the expression of
PABP5, whose domain structure (Figure 1A) suggests distinct
roles from other PABPs, although intriguingly, a truncated
PABP5 isoform is present in mitochondria, suggesting a
potential function in these organelles [71]. In conclusion,
further investigation into the roles of PABPs in whole
organisms, complementing molecular studies that underscore
their central role in cytoplasmic mRNA metabolism, should
uncover the full extent of their importance in both normal
and diseased states.
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