Epithelial cells form tight barriers that line both the outer and inner surfaces of organs and cavities and therefore face diverse environmental challenges. The response to these challenges relies on the cells’ dynamic viscoelastic properties, playing a pivotal role in many biological processes such as adhesion, growth, differentiation, and motility. Therefore, the cells usually adapt their viscoelastic properties to mirror the environment that determines their fate and vitality. Albeit not a high-throughput method, atomic force microscopy is still among the dominating methods to study the mechanical properties of adherent cells since it offers a broad range of forces from Piconewtons to Micronewtons at biologically significant time scales. Here, some recent work of deformation studies on epithelial cells is reviewed with a focus on viscoelastic models suitable to describe force cycle measurements congruent with the architecture of the actin cytoskeleton. The prominent role of the cortex in the cell’s response to external forces is discussed also in the context of isolated cortex extracts on porous surfaces.

You do not currently have access to this content.