Protein–protein interactions (PPIs) in the nucleus play key roles in transcriptional regulation and ensure genomic stability. Critical to this are histone-mediated PPI networks, which are further fine-tuned through dynamic post-translational modification. Perturbation to these networks leads to genomic instability and disease, presenting epigenetic proteins as key therapeutic targets. This mini-review will describe progress in mapping the combinatorial histone PTM landscape, and recent chemical biology approaches to map histone interactors. Recent advances in mapping direct interactors of histone PTMs as well as local chromatin interactomes will be highlighted, with a focus on mass-spectrometry based workflows that continue to illuminate histone-mediated PPIs in unprecedented detail.
-
Cover Image
Cover Image
Long Terminal Repeat (LTR) retrotransposons replicate through “copy and paste” mechanisms mediated by reverse transcription in virus-like particles (VLPs) and integration in the nucleus (see article from Lee and Martienssen, pp. 2241–2251). VLP DNA-sequencing reveals complementary DNA (cDNA) replication intermediates from active retrotransposons. Instead of functional linear intermediates that integrate in the nucleus, the Arabidopsis retroelement SISYPHUS lacks features important for nuclear import, and instead accumulates circular cDNA from futile autointegration within the VLP. In Greek mythology, Sisyphus was condemned to the futile task of rolling a huge boulder uphill eternally. Image created and provided Seung Cho Lee, Evan Ernst, and Robert A. Martienssen.
Chemical biology approaches to study histone interactors
Antony J. Burton, Ghaith M. Hamza, Andrew X. Zhang, Tom W. Muir; Chemical biology approaches to study histone interactors. Biochem Soc Trans 1 November 2021; 49 (5): 2431–2441. doi: https://doi.org/10.1042/BST20210772
Download citation file: