Heat shock protein 90 (Hsp90), although one of the most essential intracellular chaperones, can also play key roles in the extracellular milieu. Here, we review the properties of extracellular Hsp90 in cellular homeostasis in the heat shock response (HSR), focusing on cells of the central nervous system. Hsp90 can be secreted by microglia as well as other cell types by non-canonical pathways of secretion. The chaperone may then influence the behavior of distant cells and can for instance protect neuronal cells from the oxidative burst accompanying phagocytosis by microglia of beta-amyloid fibrils. A mechanism involving activation of the transcription factor Nrf2, and induction of the antioxidant response is reported. We review the potential role of extracellular Hsp90, Nrf2 and transcellular chaperone signaling in the non-cell-intrinsic HSR.
-
Cover Image
Cover Image
Long Terminal Repeat (LTR) retrotransposons replicate through “copy and paste” mechanisms mediated by reverse transcription in virus-like particles (VLPs) and integration in the nucleus (see article from Lee and Martienssen, pp. 2241–2251). VLP DNA-sequencing reveals complementary DNA (cDNA) replication intermediates from active retrotransposons. Instead of functional linear intermediates that integrate in the nucleus, the Arabidopsis retroelement SISYPHUS lacks features important for nuclear import, and instead accumulates circular cDNA from futile autointegration within the VLP. In Greek mythology, Sisyphus was condemned to the futile task of rolling a huge boulder uphill eternally. Image created and provided Seung Cho Lee, Evan Ernst, and Robert A. Martienssen.
Extracellular Hsp90 and protection of neuronal cells through Nrf2
Stuart K. Calderwood, Thiago J. Borges, Takanori Eguchi, Benjamin J. Lang, Ayesha Murshid, Yuka Okusha, Thomas L. Prince; Extracellular Hsp90 and protection of neuronal cells through Nrf2. Biochem Soc Trans 1 November 2021; 49 (5): 2299–2306. doi: https://doi.org/10.1042/BST20210370
Download citation file: