In recent years, researchers have been pursuing a method to design and to construct life forms from scratch — in other words, to create artificial cells. In many studies, artificial cellular membranes have been successfully fabricated, allowing the research field to grow by leaps and bounds. Moreover, in addition to lipid bilayer membranes, proteins are essential factors required to construct any cellular metabolic reaction; for that reason, different cell-free expression systems under various conditions to achieve the goal of controlling the synthetic cascades of proteins in a confined area have been reported. Thus, in this review, we will discuss recent issues and strategies, enabling to control protein synthesis cascades that are being used, particularly in research on artificial cells.
-
Cover Image
Cover Image
Long Terminal Repeat (LTR) retrotransposons replicate through “copy and paste” mechanisms mediated by reverse transcription in virus-like particles (VLPs) and integration in the nucleus (see article from Lee and Martienssen, pp. 2241–2251). VLP DNA-sequencing reveals complementary DNA (cDNA) replication intermediates from active retrotransposons. Instead of functional linear intermediates that integrate in the nucleus, the Arabidopsis retroelement SISYPHUS lacks features important for nuclear import, and instead accumulates circular cDNA from futile autointegration within the VLP. In Greek mythology, Sisyphus was condemned to the futile task of rolling a huge boulder uphill eternally. Image created and provided Seung Cho Lee, Evan Ernst, and Robert A. Martienssen.
Controlled metabolic cascades for protein synthesis in an artificial cell
Huong Thanh Nguyen, Sungwoo Lee, Kwanwoo Shin; Controlled metabolic cascades for protein synthesis in an artificial cell. Biochem Soc Trans 1 November 2021; 49 (5): 2143–2151. doi: https://doi.org/10.1042/BST20210175
Download citation file: