Metabolic labelling pulse–chase experiments are important means to study molecular turnover rates. However, the inherent problem associated with the method is precursor re-utilization, which can cause a significant overestimation of the actual rates of molecular degradation. In published studies on mitochondrial degradation, this problem has led to widely differing results. Practically, the extra information required to correct these errors is not easy to obtain. Using an example of a mitochondrial protein degradation study with NaH14CO3 as the precursor label, we explain the limitations of the method and our approaches to mathematical correction. A dynamic model, including error, used the full power of the data and resulted in sensitive and specific distributed parameter estimates, helping to reduce numbers of experimental animals. This example has important implications not only for similar pulse–chase experiments, but also in a more general context where comparable types of data are generated.

You do not currently have access to this content.