Bacteria produce an array of glycan-based structures including capsules, lipo-oligosaccharide and glycosylated proteins, which are invariably cell-surface-located. For pathogenic bacteria, such structures are involved in diverse roles in the life cycle of the bacterium, including adhesion, colonization, avoidance of predation and interactions with the immune system. Compared with eukaryotes, bacteria produce huge combinatorial variations of glycan structures, which, coupled to the lack of genetic data, has previously hampered studies on bacterial glycans and their role in survival and pathogenesis. The advent of genomics in tandem with rapid technological improvements in MS analysis has opened a new era in bacterial glycomics. This has resulted in a rich source of novel glycan structures and new possibilities for glycoprospecting and glycoengineering. However, assigning genetic information in predicted glycan biosynthetic pathways to the overall structural information is complex. Bioinformatic analysis is required, linked to systematic mutagenesis and functional analysis of individual genes, often from diverse biosynthetic pathways. This must then be related back to structural analysis from MS or NMR spectroscopy. To aid in this process, systems level analysis of the multiple datasets can be used to make predictions of gene function that can then be confirmed experimentally. The present paper exemplifies these advances with reference to the major gastrointestinal pathogen Campylobacter jejuni.
Skip Nav Destination
Article navigation
October 2010
- Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
Conference Article|
September 24 2010
Systems analysis of bacterial glycomes
Emily Kay;
Emily Kay
*The Centre for Integrative Systems Biology, Imperial College, London SW7 2AZ, U.K.
†Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
Search for other works by this author on:
Victor I. Lesk;
Victor I. Lesk
*The Centre for Integrative Systems Biology, Imperial College, London SW7 2AZ, U.K.
Search for other works by this author on:
Alireza Tamaddoni-Nezhad;
Alireza Tamaddoni-Nezhad
*The Centre for Integrative Systems Biology, Imperial College, London SW7 2AZ, U.K.
Search for other works by this author on:
Paul G. Hitchen;
Paul G. Hitchen
*The Centre for Integrative Systems Biology, Imperial College, London SW7 2AZ, U.K.
Search for other works by this author on:
Anne Dell;
Anne Dell
*The Centre for Integrative Systems Biology, Imperial College, London SW7 2AZ, U.K.
Search for other works by this author on:
Michael J. Sternberg;
Michael J. Sternberg
*The Centre for Integrative Systems Biology, Imperial College, London SW7 2AZ, U.K.
Search for other works by this author on:
Stephen Muggleton;
Stephen Muggleton
*The Centre for Integrative Systems Biology, Imperial College, London SW7 2AZ, U.K.
Search for other works by this author on:
Brendan W. Wren
Brendan W. Wren
1
*The Centre for Integrative Systems Biology, Imperial College, London SW7 2AZ, U.K.
†Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
1To whom correspondence should be addressed (email Brendan.Wren@lshtm.ac.uk).
Search for other works by this author on:
Biochem Soc Trans (2010) 38 (5): 1290–1293.
Article history
Received:
March 12 2010
Citation
Emily Kay, Victor I. Lesk, Alireza Tamaddoni-Nezhad, Paul G. Hitchen, Anne Dell, Michael J. Sternberg, Stephen Muggleton, Brendan W. Wren; Systems analysis of bacterial glycomes. Biochem Soc Trans 1 October 2010; 38 (5): 1290–1293. doi: https://doi.org/10.1042/BST0381290
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.