Elementary-modes analysis has become a well-established theoretical tool in metabolic pathway analysis. It allows one to decompose complex metabolic networks into the smallest functional entities, which can be interpreted as biochemical pathways. This analysis has, in medium-size metabolic networks, led to the successful theoretical prediction of hitherto unknown pathways. For illustration, we discuss the example of the phosphoenolpyruvate-glyoxylate cycle in Escherichia coli. Elementary-modes analysis meets with the problem of combinatorial explosion in the number of pathways with increasing system size, which has hampered scaling it up to genome-wide models. We present a novel approach to overcoming this obstacle. That approach is based on elementary flux patterns, which are defined as sets of reactions representing the basic routes through a particular subsystem that are compatible with admissible fluxes in a (possibly) much larger metabolic network. The subsystem can be made up by reactions in which we are interested in, for example, reactions producing a certain metabolite. This allows one to predict novel metabolic pathways in genome-scale networks.
Skip Nav Destination
Article navigation
October 2010
- Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
Conference Article|
September 24 2010
Predicting novel pathways in genome-scale metabolic networks
Stefan Schuster;
Stefan Schuster
1
1Department of Bioinformatics, School of Biology and Pharmacy, University of Jena, Ernst-Abbe-Pl. 2, D-07743 Jena, Germany
1Correspondence may be addressed to any author (email stefan.schu@uni-jena.de, luis.defigueiredo@uni-jena.de or christoph.kaleta@uni-jena.de).
Search for other works by this author on:
Luís F. de Figueiredo;
Luís F. de Figueiredo
1Department of Bioinformatics, School of Biology and Pharmacy, University of Jena, Ernst-Abbe-Pl. 2, D-07743 Jena, Germany
Search for other works by this author on:
Christoph Kaleta
Christoph Kaleta
1Department of Bioinformatics, School of Biology and Pharmacy, University of Jena, Ernst-Abbe-Pl. 2, D-07743 Jena, Germany
Search for other works by this author on:
Biochem Soc Trans (2010) 38 (5): 1202–1205.
Article history
Received:
April 16 2010
Citation
Stefan Schuster, Luís F. de Figueiredo, Christoph Kaleta; Predicting novel pathways in genome-scale metabolic networks. Biochem Soc Trans 1 October 2010; 38 (5): 1202–1205. doi: https://doi.org/10.1042/BST0381202
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.