The heterogeneous pathology of tauopathies and the differential susceptibility of different neuronal types to WT (wild-type) and mutant tau suggest that phosphorylation at particular sites rather than hyperphosphorylation mediates toxicity or dysfunction in a cell-type-specific manner. Pan-neuronal accumulation of tau in the Drosophila CNS (central nervous system) specifically affected the MBs (mushroom body neurons), consistent with neuronal type-specific effects. The MB aberrations depended, at least in part, on occupation of two novel phosphorylation sites: Ser238 and Thr245. The degree of isoform-specific MB aberrations was paralleled by defects in associative learning, as blocking putative Ser238 and Thr245 phosphorylation yielded structurally normal, but profoundly dysfunctional, MBs, as animals accumulating the mutant protein exhibited strongly impaired associative learning. Similarly dysfunctional MBs were obtained by temporally restricting tau accumulation to the adult CNS, which also altered the tau phosphorylation pattern. Our data clearly distinguish tau-dependent neuronal degeneration and dysfunction and suggest that temporal differences in occupation of the same phosphorylation sites are likely to mediate these distinct effects of tau.

You do not currently have access to this content.