The XMAP215 (Xenopus microtubule-associated protein 215) and CLASP [CLIP-170 (cytoskeletal linker protein 170) associated protein] microtubule plus end tracking families play central roles in the regulation of interphase microtubule dynamics and the proper formation of mitotic spindle architecture and flux. XMAP215 members comprise N-terminally-arrayed hexa-HEAT (huntingtin, elongation factor 3, the PR65/A subunit of protein phosphatase 2A and the lipid kinase Tor) repeats known as TOG (tumour overexpressed gene) domains. Higher eukaryotic XMAP215 members are monomeric and have five TOG domains. Yeast counterparts are dimeric and have two TOG domains. Structure determination of the TOG domain reveals that the six HEAT repeats are aligned to form an oblong scaffold. The TOG domain face composed of intra-HEAT loops forms a contiguous, conserved tubulin-binding surface. Nested within the conserved intra-HEAT loop 1 is an invariant, signature, surface-exposed tryptophan residue that is a prime determinant in the TOG domain–tubulin interaction. The arrayed organization of TOG domains is critical for the processive mechanism of XMAP215, indicative that multiple tubulin/microtubule-binding sites are required for plus end tracking activity. The CLASP family has been annotated as containing a single N-terminal TOG domain. Using XMAP215 TOG domain structure determinants as a metric to analyse CLASP sequence, it is anticipated that CLASP contains two additional cryptic TOGL (TOG-like) domains. The presence of additional TOGL domains implicates CLASP as an ancient XMAP215 relative that uses a similar, multi-TOG-based mechanism to processively track microtubule ends.

You do not currently have access to this content.