Lamins are intermediate filament proteins that form a network lining the inner nuclear membrane. They provide mechanical strength to the nuclear envelope, but also appear to have many other functions as reflected in the array of diseases caused by lamin mutations. Unlike other intermediate filament proteins, they do not self-assemble into 10 nm filaments in vitro and their in vivo organization is uncertain. We have recently re-examined the organization of a simple B-type lamina in Xenopus oocytes [Goldberg, Huttenlauch, Hutchison and Stick (2008) J. Cell Sci. 121, 215–225] and shown that it consists of tightly packed 8–10 nm filaments with regular cross-connections, tightly opposed to the membrane. When lamin A is expressed in oocytes, it forms organized bundles on top of the B lamina. This has led to a new model for lamina organization which is discussed in the present paper.

You do not currently have access to this content.