Transcription is often regulated at the level of initiation by the presence of transcription factors or nucleoid proteins or by changing concentrations of metabolites. These can influence the kinetic properties and/or structures of the intermediate RNA polymerase–DNA complexes in the pathway. Time-resolved footprinting techniques combine the high temporal resolution of a stopped-flow apparatus with the specific structural information obtained by the probing agent. Combined with a careful quantitative analysis of the evolution of the signals, this approach allows for the identification and kinetic and structural characterization of the intermediates in the pathway of DNA sequence recognition by a protein, such as a transcription factor or RNA polymerase. The combination of different probing agents is especially powerful in revealing different aspects of the conformational changes taking place at the protein–DNA interface. For example, hydroxyl radical footprinting, owing to their small size, provides a map of the solvent-accessible surface of the DNA backbone at a single nucleotide resolution; modification of the bases using potassium permanganate can reveal the accessibility of the bases when the double helix is distorted or melted; cross-linking experiments report on the formation of specific amino acid–DNA contacts, and DNase I footprinting results in a strong signal-to-noise ratio from DNA protection at the binding site and hypersensitivity at curved or kinked DNA sites. Recent developments in protein footprinting allow for the direct characterization of conformational changes of the proteins in the complex.
Skip Nav Destination
Article navigation
August 2008
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
Conference Article|
July 22 2008
Time-resolved footprinting for the study of the structural dynamics of DNA–protein interactions
Bianca Sclavi
Bianca Sclavi
1
1LBPA (Laboratoire de Biotechnologies et Pharmacologie génétique Appliquée), UMR 8113 du CNRS, Ecole Normale Supérieure de Cachan, Cachan, France
1email sclavi@lbpa.ens-cachan.fr
Search for other works by this author on:
Biochem Soc Trans (2008) 36 (4): 745–748.
Article history
Received:
April 21 2008
Citation
Bianca Sclavi; Time-resolved footprinting for the study of the structural dynamics of DNA–protein interactions. Biochem Soc Trans 1 August 2008; 36 (4): 745–748. doi: https://doi.org/10.1042/BST0360745
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Captcha Validation Error. Please try again.