Many studies have demonstrated that the distribution of meiotic crossover events along chromosomes is non-random in plants and other species with sexual reproduction. Large differences in recombination frequencies appear at several scales. On a large scale, regions of high and low rates of crossover have been found to alternate along the chromosomes in all plant species studied. High crossover rates have been reported to be correlated with several chromosome features (e.g. gene density and distance to the centromeres). However, most of these correlations cannot be extended to all plant species. Only a few plant species have been studied on a finer scale. Hotspots of meiotic recombination (i.e. DNA fragments of a few kilobases in length with a higher rate of recombination than the surrounding DNA) have been identified in maize and rice. Most of these hotspots are intragenic. In Arabidopsis thaliana, we have identified several DNA fragments (less than 5 kb in size) with genetic recombination rates at least 5 times higher than the whole-chromosome average [4.6 cM (centimorgan)/Mb], which are therefore probable hotspots for meiotic recombination. Most crossover breakpoints lie in intergenic or non-coding regions. Major efforts should be devoted to characterizing meiotic recombination at the molecular level, which should help to clarify the role of this process in genome evolution.

You do not currently have access to this content.