14-3-3 proteins regulate a wide range of target proteins via direct protein-protein interactions. The target-binding domain in 14-3-3 proteins is highly conserved, suggesting similar biochemical properties for all 14-3-3s. However, higher eukaryotes possess multiple 14-3-3 genes, and these genes exhibit diverse patterns of gene expression within any one organism. This tends to suggest specific functions for particular genes. Some biochemical data suggest 14-3-3 isoform-specific protein-protein interactions, whereas other studies conclude that apparent isoform-specificity is the result of differences in expression patterns rather than in the biochemical properties of 14-3-3 isoforms. Here we discuss evidence that demonstrates that the expression levels of 14-3-3 proteins in cells are important for regulating the activity of their target proteins, and further that the elimination of individual 14-3-3 isoforms can result in detectable phenotypes. We also examine evidence that 14-3-3 isoform specificity can in some cases reflect differing biochemical properties as well as differential transcriptional regulation.

This content is only available as a PDF.
You do not currently have access to this content.