Constitutive splicing of the potato invertase miniexon 2 (9 nt long) requires a branchpoint sequence positioned around 50 nt upstream of the 5′ splice site of the adjacent intron and a U11 element found just downstream of the branchpoint in the upstream intron [Simpson, Hedley, Watters, Clark, McQuade, Machray and Brown (2000) RNA 6, 422–433]. The sensitivity of this in vivo plant splicing system has been used to demonstrate exon scanning in plants, and to characterize plant intronic elements, such as branchpoint and poly-pyrimidine tract sequences. Plant introns differ from their vertebrate and yeast couterparts in being UA- or U-rich (up to 85% UA). One of the key differences in splicing between plants and other eukaryotes lies in early intron recognition, which is thought to be mediated by UA-binding proteins. We are adopting three approaches to studying the RNA-protein interactions in plant splicing. First, overexpression of plant splicing factors and, in particular, UA-binding proteins, in conjunction with a range of mini-exon mutants. Secondly, the sequences of around 65% of vertebrate and yeast splicing factors have high-quality matches to Arabidopsis proteins, opening the door to identification and analysis of gene knockouts. Finally, to discover plant-specific proteins involved in splicing and in, for example, rRNA or small nuclear RNA processing, green fluorescent protein-cDNA fusion libraries in viral vectors are being screened.

You do not currently have access to this content.