Dihydroxyacetone (DHA) is the smallest ketotriose, and it is utilized by many organisms as an energy source. However, at higher concentrations, DHA becomes toxic towards several organisms including the budding yeast Saccharomyces cerevisiae. In the present study, we show that DHA toxicity is due to its spontaneous conversion to methylglyoxal (MG) within yeast cells. A mutant defective in MG-metabolizing enzymes (glo1Δgre2Δgre3Δ) exhibited higher susceptibility to DHA. Intracellular MG levels increased following the treatment of glo1Δgre2Δgre3Δ cells with DHA. We previously reported that MG depolarized the actin cytoskeleton and changed vacuolar morphology. We herein demonstrated the depolarization of actin and morphological changes in vacuoles following a treatment with DHA. Furthermore, we found that both MG and DHA caused the morphological change in nucleus, and inhibited the nuclear division. Our results suggest that the conversion of DHA to MG is a dominant contributor to its cytotoxicity.

You do not currently have access to this content.