The hPXR (human pregnane X receptor), a major chemical toxin sensor, is a ligand-induced transcription factor activated by various xenobiotics and toxins, resulting in the transcriptional up-regulation of detoxifying enzymes. To date, little is known about the upstream regulation of hPXR. Using MS analysis and a kinome-wide siRNA screen, we report that the E3 ligase UBR5 (ubiquitin protein ligase E3 component n-recognin 5) and DYRK2 (dual-specificity tyrosine-phosphorylation-regulated kinase 2) regulate hPXR stability. UBR5 knockdown resulted in accumulation of cellular hPXR and a concomitant increase in hPXR activity, whereas the rescue of UBR5 knockdown decreased the cellular hPXR level and activity. Importantly, UBR5 exerted its effect in concert with the serine/threonine kinase DYRK2, as the knockdown of DYRK2 phenocopied UBR5 knockdown. hPXR was shown to be a substrate for DYRK2, and DYRK2-dependent phosphorylation of hPXR facilitated its subsequent ubiquitination by UBR5. This is the first report of the post-translational regulation of hPXR via phosphorylation-facilitated ubiquitination by DYRK2 and UBR5. The results of the present study reveal the role of the ubiquitin–proteasomal pathway in modulating hPXR activity and indicate that pharmacological inhibitors of the ubiquitin–proteasomal pathway that regulate hPXR stability may negatively affect treatment outcome from unintended hPXR-mediated drug–drug interactions.

You do not currently have access to this content.