The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.

The post-translational modification of proteins with the covalent attachment of the 76-residue protein ubiquitin is a critical event that ultimately determines the fate of many proteins in the cell. This process, known as ubiquitination, is involved in a multitude of processes including cell-cycle progression, transcriptional regulation, DNA repair, signal transduction and protein turnover by the proteasome [1]. Ubiquitination involves the sequential transfer of an ubiquitin molecule through an enzyme cascade consisting of an ubiquitin-activating enzyme (E1), an ubiquitin-conjugating enzyme (E2) and an ubiquitin ligase (E3), until an isopeptide bond is formed between the C-terminus of ubiquitin and the ε-amino group of a lysine residue on a substrate protein. The E2–E3 combination controls the specificity of the target protein selected for modification, the site of attachment to the substrate protein, the length of the ubiquitin chain and the type of lysine linkage (i.e. Lys11, Lys48 and Lys63) made between the attached ubiquitin molecules [2].

There are different classes of E3 ubiquitin ligases that have been identified including RING, U-box and HECT (homologous with E6-associated protein C-terminus) E3 ligases (Figure 1). The RING and U-box E3 ligases function as scaffolds thought to orient the E2~ubiquitin thioester complex with respect to the target protein allowing for efficient ubiquitin transfer [2,3]. All RING E3 ligases co-ordinate two zinc ions via eight cysteine and histidine residues in a cross-brace formation [4], as exemplified from three-dimensional structures of c-Cbl [5], TRAF6 (tumour-necrosis-factor-receptor-associated factor 6) [6] and cIAP2 (cellular inhibitor of apoptosis 2) [7]. This fold positions conserved residues required for RING E3 ligases to engage with their cognate E2~ubiquitin and promote the transfer of the cargo ubiquitin to a target protein [811]. By contrast, HECT E3 ligases possess a common bilobal C-terminal HECT domain, and comprises an N-terminal lobe that retains the binding site for the E2 enzyme and a smaller C-terminal lobe that contains a conserved catalytic cysteine residue [12,13]. The HECT E3 ligases play a direct role in substrate ubiquitination by forming a catalytic intermediate thioester between the C-lobe cysteine residue and the C-terminus of ubiquitin [1416]. Advances in our understanding of RING and HECT structures and mechanisms have been previously and excellently reviewed [2,3,1719].

Proposed pathways for ubiquitination by different E3 ubiquitin ligases

Figure 1
Proposed pathways for ubiquitination by different E3 ubiquitin ligases

The ubiquitin activating enzyme (E1) activates ubiquitin through an ATP-dependent mechanism to form a thioester bond between the C-terminal carboxyl of ubiquitin and the catalytic cysteine in the E1. The ubiquitin is then transferred to an ubiquitin conjugating enzyme (E2) via a transthiolation reaction to form a thioester bond between the C-terminus of ubiquitin and the conserved catalytic cysteine residue of the E2. For the RING E3 ligases, the E2~ubiquitin complex engages with the RING domain of the E3 which optimally positions the ubiquitin in preparation for its transfer to a substrate protein. The HECT E3 ligases engage the E2~ubiquitin complex via their N-terminal lobe and perform another transthiolation reaction to form a thioester bond between the C-terminus of ubiquitin and the conserved catalytic cysteine residue in the C-terminal lobe of the HECT E3s. This HECT~ubiquitin intermediate is then poised for the subsequent transfer of ubiquitin to a substrate. The RBR E3 ligases use a combination of the RING and HECT mechanisms (termed a ‘RING–HECT’ hybrid mechanism [29]). In this mechanism, the RING1 engages with the E2~ubiquitin complex in a similar manner to the RING E3s, whereas the Rcat acts in a similar fashion to the C-terminal lobe of the HECT E3s by performing a transthiolation reaction to form a thiolester bond between the C-terminus of ubiquitin and the catalytic cysteine of the Rcat domain of RBR E3s.

Figure 1
Proposed pathways for ubiquitination by different E3 ubiquitin ligases

The ubiquitin activating enzyme (E1) activates ubiquitin through an ATP-dependent mechanism to form a thioester bond between the C-terminal carboxyl of ubiquitin and the catalytic cysteine in the E1. The ubiquitin is then transferred to an ubiquitin conjugating enzyme (E2) via a transthiolation reaction to form a thioester bond between the C-terminus of ubiquitin and the conserved catalytic cysteine residue of the E2. For the RING E3 ligases, the E2~ubiquitin complex engages with the RING domain of the E3 which optimally positions the ubiquitin in preparation for its transfer to a substrate protein. The HECT E3 ligases engage the E2~ubiquitin complex via their N-terminal lobe and perform another transthiolation reaction to form a thioester bond between the C-terminus of ubiquitin and the conserved catalytic cysteine residue in the C-terminal lobe of the HECT E3s. This HECT~ubiquitin intermediate is then poised for the subsequent transfer of ubiquitin to a substrate. The RBR E3 ligases use a combination of the RING and HECT mechanisms (termed a ‘RING–HECT’ hybrid mechanism [29]). In this mechanism, the RING1 engages with the E2~ubiquitin complex in a similar manner to the RING E3s, whereas the Rcat acts in a similar fashion to the C-terminal lobe of the HECT E3s by performing a transthiolation reaction to form a thiolester bond between the C-terminus of ubiquitin and the catalytic cysteine of the Rcat domain of RBR E3s.

Close modal

There is also an important group of E3 ligases known as the RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ligases [20]. The best known of the RBR enzymes are parkin, which has a prominent role in the manifestation of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), both of which are components of the multiprotein LUBAC (linear ubiquitin chain assembly complex). Unlike traditional RING- or HECT-style E3 ligases, all RBR E3 ligases identified to date are complex multidomain proteins. Initial sequence alignment methods suggested that two of the RBR domains contained multiple cysteine residues used to co-ordinate zinc ions that roughly conformed to the RING E3 ligase consensus sequence (RING1 and RING2) [2022]. A third domain that lay between the proposed RING sequences, and again heavily populated by cysteine residues, was identified by multiple sequence alignment methods and aptly named an IBR (InBetweenRING) domain [23]. Thus the RBR nomenclature was born.

Initial experiments with several RBR E3 ligases including parkin and HHARI [also known as ARIH1 (Ariadne RBR E3 ubiquitin protein ligase 1)] were conducted on the basis that the RBR E3 ligases were in fact unusual E3 ligases that contained multiple RING domains and facilitated ubiquitination in a similar manner to the RING E3 enzymes [2427]. However, recent advances in our understanding of the structural biology of RBR ligases, which are the focus of the present review, render the RING1-BetweenRING-RING2 nomenclature invalid. First, the RING2 domain of the RBR ligases does not conform to the canonical RING E3 structure; secondly, RBRs use an auto-inhibitory mechanism, first identified for parkin [28], that modulates ubiquitination activity; and thirdly, RBRs use a hybrid mechanism, first identified in HHARI [29], that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction (Figure 1). Therefore we propose renaming the RBR domains while retaining the familiar RBR abbreviation as follows. The RING2 is not a RING, and possesses a single catalytic cysteine residue that allows it to accept an ubiquitin molecule from the E2 enzyme, form a thioester linkage with ubiquitin and transfer it to a substrate. As this domain is essential for RBR E3 ligase activity, a more appropriate naming should be a Rcat (required-for-catalysis) domain. The IBR domain, which we now know is actually not physically between two separate RING domains, adopts the same fold as the Rcat domain while lacking the catalytic cysteine residue and ubiquitination activity. Therefore this region can be more fittingly called a BRcat (benign-catalytic) domain. The present review will describe how new three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into their ubiquitination biology and at the same time revealed many new unanswered questions.

The overall domain architectures of the 12 RBR E3 ligases found in humans are illustrated in Figure 2. Intriguingly, to date no obvious examples of proteins have been identified that contain an isolated BRcat or Rcat suggesting that this triad of RING1, BRcat and Rcat domains are always found together in Nature. Furthermore, the RBR domains are invariably found in a particular order with the RING1 being sequentially followed by BRcat then Rcat [20,22], indicative that all three domains, including the BRcat, are required for RBR-mediated ubiquitination. However, the mechanism underlying ubiquitination is still unclear. In general, the RBR namesake of all human proteins is found near the C-termini of the E3 ligases, except for ANKIB1 (ankyrin repeat- and IBR domain-containing 1) and Dorfin where the RBR is located near the centre and N-terminus respectively. Interestingly, most RBR ligases contain a variety of different protein–protein interaction motifs near their N-termini. For example, both parkin and HOIL-1 contain N-terminal Ubl (ubiquitin-like) domains (Figure 2). The Ubl of parkin acts as an intramolecular auto-inhibitory domain by interacting with the RBR domain to attenuate ubiquitination [28] and has also been shown to bind to many other molecules including S5a [also known as PSMD4 (proteasome 26S subunit, non-ATPase, 4)] [30] and Eps15 (epidermal growth factor receptor pathway substrate 15) [30,31]. Likewise, the Ubl of HOIL-1 acts as a recruitment factor for HOIP through its N-terminal UBA (ubiquitin-associated) domain [32] to aid in the formation of the linear ubiquitin chain assembly complex, LUBAC. Parkin also has a unique cysteine-rich domain that was termed RING0 to fall in line with other domain nomenclature that is located immediately N-terminal to the RBR domain [33] and acts as a second inhibitory module by occluding the catalytic cysteine site in the Rcat domain [3436]. Extended stretches of acidic residues are found near the N-termini of HHARI, TRIAD1 and TRIAD3 that were recently suggested to bind modified CRL [Cul (cullin)-RING-ligases] and cause RBR activation [37]. Other confirmed protein–protein interaction domain examples in RBRs include HOIP which has two NZF [Npl4 ZNF (zinc finger); NZF1 and NZF2) domains, where NZF1 binds to ubiquitin and NZF2 is required for SHARPIN (SHANK-associated RH domain interactor) Ubl recruitment [38], whereas HOIL-1 has one NZF domain that binds to linear ubiquitin chains with low micromolar affinity [38,39]. Numerous additional protein–protein interaction domains in the RBRs have been predicted including a PUB (PNGase/UBA- or UBX-containing domain; for binding to ATPase domain-containing proteins [40]), two ankyrin repeats in ANKIB1, an N-terminal RWD (RING finger and WD repeat-containing) domain in ARA54 [also known as RNF14 (RING finger protein 14)], as well as a conserved CPH [Cul7, Parc (parkin-like cytoplasmic p53-binding protein) and HERC2 proteins] domain involved in p53 binding [41] and a DOC (docking) domain in Parc.

Domain architecture of the RBR E3 ubiquitin ligases

Figure 2
Domain architecture of the RBR E3 ubiquitin ligases

Domains found in each RBR E3 ligase are RING1 (orange) BRcat (previously known as IBR; hot pink), and Rcat, (previously known as RING2; warm pink). Other domains listed include the Ubl (light pink), RING0 (wheat) and Npl4 NZF (wheat), acidic/Gly N-terminal extension (Acidic/Gly or Acidic; dark green), UBA-like (lime green), Ariadne domain (cyan), UIM (olive), ankyrin repeats (dark grey), docking domain (DOC; teal), Cullin (pale yellow), RWD (dark salmon), PUB (deep blue), ZnF (pale green), helical base (light grey) and Dorfin domain (deep purple). A conserved domain found in Cul7, Parc, and HERC2 proteins (CPH) is located in the N-terminal extension of Parc (not shown).

Figure 2
Domain architecture of the RBR E3 ubiquitin ligases

Domains found in each RBR E3 ligase are RING1 (orange) BRcat (previously known as IBR; hot pink), and Rcat, (previously known as RING2; warm pink). Other domains listed include the Ubl (light pink), RING0 (wheat) and Npl4 NZF (wheat), acidic/Gly N-terminal extension (Acidic/Gly or Acidic; dark green), UBA-like (lime green), Ariadne domain (cyan), UIM (olive), ankyrin repeats (dark grey), docking domain (DOC; teal), Cullin (pale yellow), RWD (dark salmon), PUB (deep blue), ZnF (pale green), helical base (light grey) and Dorfin domain (deep purple). A conserved domain found in Cul7, Parc, and HERC2 proteins (CPH) is located in the N-terminal extension of Parc (not shown).

Close modal

In general, it appears that the C-termini of some of the RBRs are exclusively involved in auto-inhibitory interactions or controlling linkage specificity during ubiquitin chain assembly. For example, HHARI, TRIAD1 and ANKIB1 all contain Ariadne domains adjacent to their respective RBR domains that are involved in an intramolecular auto-inhibition mechanism whereby the Ariadne domain blocks access to the catalytic cysteine residue in the Rcat module [42], reminiscent of the mode of action used by the RING0 domain of parkin [3436]. Interestingly, HOIP has a C-terminal extension of its RBR domain called a helical base that is responsible for the linear ubiquitin chain activity of the LUBAC [also known as the LDD (linear ubiquitin chain determining domain)] [43,44]. Furthermore, another unique feature of HOIP is the presence of two separate ZnF-like domains, with one in each of the Rcat and helical base domains, that are involved in forming a ubiquitin-binding platform required for linear ubiquitin chain building [43]. Finally, Dorfin has a unique namesake ‘Dorfin’ domain immediately C-terminal to its RBR domain [20]. This is suggestive that the Dorfin domain may be involved in modulating Dorfin's activity in a manner analogous to the inhibitory Ariadne domain in the Ariadne-containing RBRs [42]. Alternatively, it may possibly be involved in guiding ubiquitin chain linkage specificity like the helical base of HOIP [4345].

Despite the identification of a large number of substrates, specifically in the case of parkin, we still know very little about RBR-mediated substrate recognition, how a substrate is ubiquitinated by an RBR E3 ligase and/or how the RBRs are regulated to control their ubiquitination mechanism. Furthermore, there are now several examples of previously identified RBR substrates and/or interacting proteins that cannot be reconciled with the recent structures of parkin and HHARI. A prime example is UbcH8 [UBE2L6 (ubiquitin-conjugating enzyme E2L 6)] that was originally shown to interact with the Rcat domain [26,46,47]. However, we now know that the Rcat is not a RING domain and that it lacks the conserved residues required for E2 recruitment [48]. Owing to its association with Parkinson's disease, parkin has been the most extensively studied of the RBRs and consequently the literature is biased towards proposed interacting proteins and substrates of parkin. In contrast, only a few interacting proteins/substrates have been observed for the other RBRs and the sites of interaction are not well defined.

Nevertheless, numerous proteins have been observed to interact with the RBR E3 ligases with some of these shown or predicted to be substrates for RBR-mediated ubiquitination. To help consolidate the literature and determine if there are any similarities between the RBRs and their interaction partners, we have assembled a comprehensive table of RBR interacting proteins that have been identified using direct experimental methods (Table 1). In general the predominant methods used to observe these interactions have been immunoprecipitation, yeast two-hybrid or pull-down experiments using N-terminal GST or His6 affinity tags. Many researchers have also used a variety of truncated proteins or protein fragments of the RBRs to further pinpoint the specific regions responsible for the observed interaction. Quantitative measurements have been sparse and are probably the next step in elucidating the molecular mechanisms employed by the RBRs to ubiquitinate their substrates.

Table 1
Observed protein–protein interactions with RBR E3 ubiquitin ligases

Detection methods: 2H, yeast or mammalian-two hybrid; AUbA, autoubiquitination assay; CE, co-elution during chromatography purification; FRET, FRET in vivo; IF, immunofluorescence; IP, immunoprecipitation; ITC, isothermal calorimetry; LCMS, liquid chromatographyMS/MS; NMR, nuclear magnetic resonance; PD, pulldown using GST, His or MBP tag; Phos, in vitro phosphorylation; SPR, surface plasmon resonance; UbA, ubiquitination assay; UbSu, ubiquitin suicide inhibitor; X-ray, X-ray crystallography.

RBR E3 ligaseInteracting proteinDetection method(s)RBR-interaction siteReference(s)
Parkin UbcH7 (UBE2L3) IP, 2H, AUbA, UbA, SPR RING1 [24,25,29,46,47,51,60,78,80,82,9194,127,132,137144
 UbcH5c (UBE2D3)/Ubc7 (UBE2G1)/UbcH6 (UBE2E1) IP, UbA  [93,140,144,145
 UbcH8 (UBE2L6)/UbcH13 (UBE2N) IP, PD, UbA Rcat [24,26,47,61
 Ubiquitin-conjugating enzyme Variant 1a (Uev1a) PD RING1 [61
 14-3-3η IP, PD, UbA RING0 [143
 20S proteasome subunit α4 (PSMA7/XAPC7, subunit α type7) 2H, IP BRcat–Rcat [83
 26S proteasome non-ATPase reg. subunit4 (Rpn10/S5a) UbA, PD, NMR Ubl [30,7982
 α-Synuclein-interacting protein (Synphylin-1, Sph1) IP, UbA, PD Rcat [94,141,143,145,146
 All 1-fused gene from chromosome 6 (Afadin/AF-6) IP, PD Rcat [147
 Aminoacyl tRNA synthase complex coactivator (p38/JTV-1/AIMP2) IP, PD Ubl, RING1 [82,91,94,146,148150
 Apoptosis regulator Bcl-2 IP, PD  [151
 Bcl-2-associated athanogene 5 (BAG5) IP, PD, UbA  [152,153
 Calcium/calmodulin dependent serine kinase (CASK/Lin2) IP, PD, UbA Rcat [92
 Carboxy terminus of Hsp70-interacting protein (CHIP) IP, PD  [63
 Casein kinase 1 (CK1) IP, PD, Phos Ser101, Ser378 [95,98
 Catenin β-1 (β-catenin) PD  [154
 Chondroitin-polymerizing factor (ChPF/Klokin1) IP, 2H  [155
 Cul IP, PD  [132
 Cdk5 IP, PD Ser131 [94,95
 Cyclin E IP, PD, UbA  [132,142,156
 DJ-1 peptidase IP, PD, UbA  [47,145,157,158
 Dopamine transporter (DAT) IP, PD  [64
 E3 SUMO-protein ligase RanBP2 IP, 2H, UbA  [78
 Endophillin-A1 PD, UbA, NMR Ubl [111
 Eps15 PD, UbA, NMR, ITC Ubl [30,31
 F-box/WD repeat-containing protein 7 (FBX30/SEL-10) IP, PD ΔUbl [132
 Heat-shock 70 kDa protein (Hsp70/chaperone protein DnaK) IP ΔUbl [63,82,127
 HDAC6 IP, PD RING0, RING1, Rcat [70,71
 Leu-rich PPR motif-containing protein (LRPPRC, LRP130) IP  [59
 Leu-rich repeat kinase 2 (LRRK2) IP Rcat [90
 LIM kinase-1 (LIMK1) IP, UbA BRcat–Rcat [91
 Machado–Joseph disease protein 1 (Ataxin-3) IP, UbA, PD, NMR Ubl, BRcat–Rcat [110,127,139,140
 Mitochondrial Rho GTPase (Miro) IP  [159,160
 Mitofusin-1 & 2 (MFN1, MFN2) IP, UbA  [49,5157
 Mortalin (HSPA9, GRP75, PBP74) IP  [161
 Neuronal DnaJ/Hsp40 chaperone HSJ1a (DNAJB2a) IP  [162
 O-glycosylated α-synuclein (αSp22) IP, UbA  [6062
 Parkin-associated endothelin receptor (Pael-R) IP, UbA  [46,63
 Parkin co-regulated gene protein (PACRG/Glup) IP  [163
 Parkin-interacting substrate (PARIS/ZNF476) IP, PD, UbA RING1, Rcat [144
 Prolierating cell nuclear antigen (PCNA) IP RING1 [68,69
 Protein interacting with C kinase 1 (PICK1/PRKCA BP) IP, PD, UbA Rcat [93
 Protein kinase A (PKA) Phos Ser101, Ser131, Ser236, Ser378 [98
 Protein kinase C (PKC) Phos Ser296, Ser378 [98
 PINK1 IP, UbA, Phos, PD, LCMS Ser65, Thr175 [49,99102,145,164168
 RNF41/NRDP1/FLRF IP, 2H, PD, UbA Ubl [150,169
 Septin4 (ARTS/CDCrel-2)/Septin5 (CDCrel-1/PNUTL1) IP, 2H, PD RBR [26,82,83,138,170
 Small ubiquitin-related modifer-1 (SUMO-1) IP, PD  [77
 Synaptotagmin XI (Syt11) 2H, IP, UbA RING1 [171
 TDP-43 IP, PD  [71
 Transcription factor single-minded 2 (SIM2) IP BRcat–Rcat [72
 TOMM70A IP, PD  [58,59
 Tubulin (α, β & γ) IP, PD, CE RING0, RING1, Rcat [82,172174
 Tyrosine protein kinase ABL1 (c-Abl) IP, PD Tyr143 [96,97
HHARI (Ariadne 1) UbcH7 (UBE2L3) IP, 2H, IF, CE, ITC, PD, UbA RING1 [27,29,37,42,114,175
 UbcH8 (UBE2L6) IP Rcat [27
 α-Synuclein IF  [176
 α-Synuclein interacting protein (Synphilin-1, Sph1) IF  [176
 Cul-1,2,3,4A (NEDD8-dependent) IP, UbSu Acidic/Gly [37
 Transcription factor single-minded (SIM2) IP  [72
 Translation initiation factor 4F homologous protein (4EHP) IP, 2H RING1 [76
TRIAD1 (Ariadne-2) UbcH7 (UBE2L3) IP, 2H, PD, PD, UbA RING1 [37,177179
 UbcH6 (UBE2E1/UbcH8 (UBE2L6)/UbcH13 (UBE2N) IP, 2H, PD Rcat [177179
 Cul-5 (NEDD8-dependent) IP, UbA  [37
 Growth factor independence 1 & 1B (Gfi1, Gfi1B) IP, 2H, PD Rcat [180
 MDM2 UbA  [84
 Nuclear Inhibitor of NF-κB β (IκBβ) IP  [181
 p53 IP, PD  [182,183
 Promyelocytic leukaemia-retinoic acid receptor α (PML-RARα) IP, IF  [179
Parc (CUL9) UbcH7 (UBE2L3) UbA  [131
 Cul-7 IP  [88,184
 NEDD8 IP, LCMS Cullin at Lys1881 [88,89
 p53 IP, PD, IF, CE, NMR CPH [41,88,131,185
 Ring box protein-1 (Rbx1) IP  [88
ARA54 (RNF14, HRIHFB2038, HFB30 and TRIAD2) UbcH6 (UBE2E1)/UbcH8 (UBE2L6)/UbcH9 (UBE2E3) 2H, AUbA RING1 [186
 Androgen receptor IP, 2H, PD, SPR, FRET, X-ray C-term FXXL(F/Y) [73,74,187194
 Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) 2H, M2H, PD  [195
 p300/CBP-associated factor 2H  [188
 T-cell factors 1 & 4 (TCF1, TCF4) IP, PD  [196
TRIAD3 (RNF216, ZIN) UbcH7 (UBE2L3)/UbcH8 (UBE2L6) IP  [197
 Killer cell Ig-like receptor (KIR) 2DL4 IP, 2H RBR [198
 Receptor interacting serine/threonine-protein kinase-1 (RIP1) IP  [103
 TNF receptor-associated factor 3 (TRAF3) IP N-term PXQX(T/S) [199
 Toll/interleukin-1 receptor adaptor protein (TIRAP) IP  [103
 Toll-like receptors 3,4,5, and 9 (TLR3,4,5,9) 2H  [197
 Virion infectivity factor (Vif) of HIV-1 IP, PD  [200
HOIP (PAUL, RNF31) HOIL-1 IP, PD, CE, UbA, SPR, X-ray, NMR UBA (via HOIL-1 Ubl) [32,38,4345,134,201203
 Sharpin (Sipl1) IP, CE, UbA NZF2 [38,43,45,133,134,202205
 UbcH7 (UBE2L3) UbA RING1–BRcat [38,44,45,201,206
 UbcH5A (UBE2D1)/UbcH5B (UBE2D2)/UbcH5C (UBE2D3) UbA RING1–BRcat [39,4345,65,85,105,134,201
 E2-25K (UBE2K) UbA  [201
 NEMO IP, PD, UbA  [39,65,67,133,134,205207
 B-cell surface antigen CD40 (CD40) IP  [207
 Muscle-Specific receptor tyrosine Kinase (MuSK) 2H  [104
 Nucleotide-binding oligomerization domain protein 2 (NOD2) IP  [208,209
 OTU domain deubiquitinase with linear link specificity (Gumby) IP  [87
 Polyubiquitin chains (Lys63>linear>Lys48IP, PD, ITC NZF1 [38,66,210
 Tumour necrosis factor receptor 1 signalling complex (TNF-RSC) IP  [66,85,211
HOIL-1 cIAP1/2 IP  [66
 Nucleotide-binding oligomerization domain protein 2 (NOD2) IP  [208,209
 Polyubiquitin chains (linear>Lys63PD, SPR, X-ray, ITC Ubl, NZF [38,39,66,210
 Protein kinase C (PKC) 2H, UbA Ubl [105
 Retinoic acid-inducible gene 1 protein (RIG-1) PD NZF [85
 Suppressor of cytokine signalling 6 (SOCS-6) IP, 2H Ubl [212
 Tumour necrosis factor α-induced protein 3 (A20) IP  [211
 Tumour receptor-associated factor 2 (TRAF2) IP  [66
RNF144A UbcH7 (UBE2L3) 2H  [213
RNF144B (p53RFP/IBRDC2/PIR2) UbcH7 (UBE2L3)/UbcH8 (UBE2L6) IP RBR [214
 Bcl-2 associated protein X (BAX) IP  [215
 CDK-interacting protein 1 (p21WAF1IP  [216
 Leukaemic nucleophosmin protein (NPMc) IP  [217
 p53, p63, p73 IP  [216,218220
Dorfin (RNF19) UbcH7 (UBE2L3)/UbcH8 (UBE2L6) IP RBR [221
 α-Synuclein interacting protein (Synphillin-1, Sph1) IP, UbA  [222
 Calcium-sensing receptor IP, 2H C-terminal extension [223
 Cu/Zn SOD1 (ALS mutants; G37R/H46R/G85R/G93A) IP, UbA C-terminal extension [224228
 Ubiquitinated-substrates (not defined) IP RBR and C-terminal extension [221
 Valosin-containing protein (p97/Cdc48 homologue) IP, IF, LCMS  [223,226
 Vimentin IF  [221
RBR E3 ligaseInteracting proteinDetection method(s)RBR-interaction siteReference(s)
Parkin UbcH7 (UBE2L3) IP, 2H, AUbA, UbA, SPR RING1 [24,25,29,46,47,51,60,78,80,82,9194,127,132,137144
 UbcH5c (UBE2D3)/Ubc7 (UBE2G1)/UbcH6 (UBE2E1) IP, UbA  [93,140,144,145
 UbcH8 (UBE2L6)/UbcH13 (UBE2N) IP, PD, UbA Rcat [24,26,47,61
 Ubiquitin-conjugating enzyme Variant 1a (Uev1a) PD RING1 [61
 14-3-3η IP, PD, UbA RING0 [143
 20S proteasome subunit α4 (PSMA7/XAPC7, subunit α type7) 2H, IP BRcat–Rcat [83
 26S proteasome non-ATPase reg. subunit4 (Rpn10/S5a) UbA, PD, NMR Ubl [30,7982
 α-Synuclein-interacting protein (Synphylin-1, Sph1) IP, UbA, PD Rcat [94,141,143,145,146
 All 1-fused gene from chromosome 6 (Afadin/AF-6) IP, PD Rcat [147
 Aminoacyl tRNA synthase complex coactivator (p38/JTV-1/AIMP2) IP, PD Ubl, RING1 [82,91,94,146,148150
 Apoptosis regulator Bcl-2 IP, PD  [151
 Bcl-2-associated athanogene 5 (BAG5) IP, PD, UbA  [152,153
 Calcium/calmodulin dependent serine kinase (CASK/Lin2) IP, PD, UbA Rcat [92
 Carboxy terminus of Hsp70-interacting protein (CHIP) IP, PD  [63
 Casein kinase 1 (CK1) IP, PD, Phos Ser101, Ser378 [95,98
 Catenin β-1 (β-catenin) PD  [154
 Chondroitin-polymerizing factor (ChPF/Klokin1) IP, 2H  [155
 Cul IP, PD  [132
 Cdk5 IP, PD Ser131 [94,95
 Cyclin E IP, PD, UbA  [132,142,156
 DJ-1 peptidase IP, PD, UbA  [47,145,157,158
 Dopamine transporter (DAT) IP, PD  [64
 E3 SUMO-protein ligase RanBP2 IP, 2H, UbA  [78
 Endophillin-A1 PD, UbA, NMR Ubl [111
 Eps15 PD, UbA, NMR, ITC Ubl [30,31
 F-box/WD repeat-containing protein 7 (FBX30/SEL-10) IP, PD ΔUbl [132
 Heat-shock 70 kDa protein (Hsp70/chaperone protein DnaK) IP ΔUbl [63,82,127
 HDAC6 IP, PD RING0, RING1, Rcat [70,71
 Leu-rich PPR motif-containing protein (LRPPRC, LRP130) IP  [59
 Leu-rich repeat kinase 2 (LRRK2) IP Rcat [90
 LIM kinase-1 (LIMK1) IP, UbA BRcat–Rcat [91
 Machado–Joseph disease protein 1 (Ataxin-3) IP, UbA, PD, NMR Ubl, BRcat–Rcat [110,127,139,140
 Mitochondrial Rho GTPase (Miro) IP  [159,160
 Mitofusin-1 & 2 (MFN1, MFN2) IP, UbA  [49,5157
 Mortalin (HSPA9, GRP75, PBP74) IP  [161
 Neuronal DnaJ/Hsp40 chaperone HSJ1a (DNAJB2a) IP  [162
 O-glycosylated α-synuclein (αSp22) IP, UbA  [6062
 Parkin-associated endothelin receptor (Pael-R) IP, UbA  [46,63
 Parkin co-regulated gene protein (PACRG/Glup) IP  [163
 Parkin-interacting substrate (PARIS/ZNF476) IP, PD, UbA RING1, Rcat [144
 Prolierating cell nuclear antigen (PCNA) IP RING1 [68,69
 Protein interacting with C kinase 1 (PICK1/PRKCA BP) IP, PD, UbA Rcat [93
 Protein kinase A (PKA) Phos Ser101, Ser131, Ser236, Ser378 [98
 Protein kinase C (PKC) Phos Ser296, Ser378 [98
 PINK1 IP, UbA, Phos, PD, LCMS Ser65, Thr175 [49,99102,145,164168
 RNF41/NRDP1/FLRF IP, 2H, PD, UbA Ubl [150,169
 Septin4 (ARTS/CDCrel-2)/Septin5 (CDCrel-1/PNUTL1) IP, 2H, PD RBR [26,82,83,138,170
 Small ubiquitin-related modifer-1 (SUMO-1) IP, PD  [77
 Synaptotagmin XI (Syt11) 2H, IP, UbA RING1 [171
 TDP-43 IP, PD  [71
 Transcription factor single-minded 2 (SIM2) IP BRcat–Rcat [72
 TOMM70A IP, PD  [58,59
 Tubulin (α, β & γ) IP, PD, CE RING0, RING1, Rcat [82,172174
 Tyrosine protein kinase ABL1 (c-Abl) IP, PD Tyr143 [96,97
HHARI (Ariadne 1) UbcH7 (UBE2L3) IP, 2H, IF, CE, ITC, PD, UbA RING1 [27,29,37,42,114,175
 UbcH8 (UBE2L6) IP Rcat [27
 α-Synuclein IF  [176
 α-Synuclein interacting protein (Synphilin-1, Sph1) IF  [176
 Cul-1,2,3,4A (NEDD8-dependent) IP, UbSu Acidic/Gly [37
 Transcription factor single-minded (SIM2) IP  [72
 Translation initiation factor 4F homologous protein (4EHP) IP, 2H RING1 [76
TRIAD1 (Ariadne-2) UbcH7 (UBE2L3) IP, 2H, PD, PD, UbA RING1 [37,177179
 UbcH6 (UBE2E1/UbcH8 (UBE2L6)/UbcH13 (UBE2N) IP, 2H, PD Rcat [177179
 Cul-5 (NEDD8-dependent) IP, UbA  [37
 Growth factor independence 1 & 1B (Gfi1, Gfi1B) IP, 2H, PD Rcat [180
 MDM2 UbA  [84
 Nuclear Inhibitor of NF-κB β (IκBβ) IP  [181
 p53 IP, PD  [182,183
 Promyelocytic leukaemia-retinoic acid receptor α (PML-RARα) IP, IF  [179
Parc (CUL9) UbcH7 (UBE2L3) UbA  [131
 Cul-7 IP  [88,184
 NEDD8 IP, LCMS Cullin at Lys1881 [88,89
 p53 IP, PD, IF, CE, NMR CPH [41,88,131,185
 Ring box protein-1 (Rbx1) IP  [88
ARA54 (RNF14, HRIHFB2038, HFB30 and TRIAD2) UbcH6 (UBE2E1)/UbcH8 (UBE2L6)/UbcH9 (UBE2E3) 2H, AUbA RING1 [186
 Androgen receptor IP, 2H, PD, SPR, FRET, X-ray C-term FXXL(F/Y) [73,74,187194
 Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) 2H, M2H, PD  [195
 p300/CBP-associated factor 2H  [188
 T-cell factors 1 & 4 (TCF1, TCF4) IP, PD  [196
TRIAD3 (RNF216, ZIN) UbcH7 (UBE2L3)/UbcH8 (UBE2L6) IP  [197
 Killer cell Ig-like receptor (KIR) 2DL4 IP, 2H RBR [198
 Receptor interacting serine/threonine-protein kinase-1 (RIP1) IP  [103
 TNF receptor-associated factor 3 (TRAF3) IP N-term PXQX(T/S) [199
 Toll/interleukin-1 receptor adaptor protein (TIRAP) IP  [103
 Toll-like receptors 3,4,5, and 9 (TLR3,4,5,9) 2H  [197
 Virion infectivity factor (Vif) of HIV-1 IP, PD  [200
HOIP (PAUL, RNF31) HOIL-1 IP, PD, CE, UbA, SPR, X-ray, NMR UBA (via HOIL-1 Ubl) [32,38,4345,134,201203
 Sharpin (Sipl1) IP, CE, UbA NZF2 [38,43,45,133,134,202205
 UbcH7 (UBE2L3) UbA RING1–BRcat [38,44,45,201,206
 UbcH5A (UBE2D1)/UbcH5B (UBE2D2)/UbcH5C (UBE2D3) UbA RING1–BRcat [39,4345,65,85,105,134,201
 E2-25K (UBE2K) UbA  [201
 NEMO IP, PD, UbA  [39,65,67,133,134,205207
 B-cell surface antigen CD40 (CD40) IP  [207
 Muscle-Specific receptor tyrosine Kinase (MuSK) 2H  [104
 Nucleotide-binding oligomerization domain protein 2 (NOD2) IP  [208,209
 OTU domain deubiquitinase with linear link specificity (Gumby) IP  [87
 Polyubiquitin chains (Lys63>linear>Lys48IP, PD, ITC NZF1 [38,66,210
 Tumour necrosis factor receptor 1 signalling complex (TNF-RSC) IP  [66,85,211
HOIL-1 cIAP1/2 IP  [66
 Nucleotide-binding oligomerization domain protein 2 (NOD2) IP  [208,209
 Polyubiquitin chains (linear>Lys63PD, SPR, X-ray, ITC Ubl, NZF [38,39,66,210
 Protein kinase C (PKC) 2H, UbA Ubl [105
 Retinoic acid-inducible gene 1 protein (RIG-1) PD NZF [85
 Suppressor of cytokine signalling 6 (SOCS-6) IP, 2H Ubl [212
 Tumour necrosis factor α-induced protein 3 (A20) IP  [211
 Tumour receptor-associated factor 2 (TRAF2) IP  [66
RNF144A UbcH7 (UBE2L3) 2H  [213
RNF144B (p53RFP/IBRDC2/PIR2) UbcH7 (UBE2L3)/UbcH8 (UBE2L6) IP RBR [214
 Bcl-2 associated protein X (BAX) IP  [215
 CDK-interacting protein 1 (p21WAF1IP  [216
 Leukaemic nucleophosmin protein (NPMc) IP  [217
 p53, p63, p73 IP  [216,218220
Dorfin (RNF19) UbcH7 (UBE2L3)/UbcH8 (UBE2L6) IP RBR [221
 α-Synuclein interacting protein (Synphillin-1, Sph1) IP, UbA  [222
 Calcium-sensing receptor IP, 2H C-terminal extension [223
 Cu/Zn SOD1 (ALS mutants; G37R/H46R/G85R/G93A) IP, UbA C-terminal extension [224228
 Ubiquitinated-substrates (not defined) IP RBR and C-terminal extension [221
 Valosin-containing protein (p97/Cdc48 homologue) IP, IF, LCMS  [223,226
 Vimentin IF  [221

RBR interactions with receptors and other membrane-associated proteins

Currently, the widely held view of parkin's role in the cell is to regulate mitochondrial clearance and mitophagy [49,50]. Consistent with this role, identified substrates for parkin include the transmembrane GTPase mitofusins 1 and 2 [49,5157], TOMM70A (translocase of outer mitochondrial membrane 70 homologue A) [58,59] and O-glycosylated α-synuclein [6062]. Parkin is also a candidate for dopaminergic signalling through interaction with the GPCR (G-protein-coupled receptor) Pael-R (parkin-associated endothelin receptor) [46,63] and the dopamine receptor [64] further underpinning its role in Parkinson's disease. The LUBAC, made up of a pair of heterodimeric RBR proteins HOIP and HOIL-1 along with SHARPIN, is involved in the innate immune and inflammatory responses [65]. These processes are controlled by the LUBAC interaction with the tumour necrosis factor receptor-signalling complex [66] to synthesize linear ubiquitin chains, which ultimately causes the recruitment of NEMO (NF-κB essential modulator) to activate the NF-κB (nuclear factor κB) signalling pathway [65,67].

RBR involvement in DNA repair and RNA processes

There is increasing evidence that the RBR E3 ligases target DNA–protein complexes upon DNA breakage and DNA packing. For example, parkin interacts with PCNA (proliferating-cell nuclear antigen) [68,69] in damaged DNA as well as HDAC6 (histone deacetylase 6) [70] and TDP-43 (TAR DNA-binding protein 43) [71] involved in DNA packing. Parkin, HHARI and ARA54 also appear to be involved in transcription and translation. Interestingly, the transcription factor SIM2 (single-minded family bHLH transcription factor 2) can be ubiquitinated by parkin and HHARI [72]; however, the molecular basis for this processing by these RBR proteins is not known. Given the lack of conservation between parkin and HHARI outside of the RBR domains, is there a commonality between HHARI and parkin that enables two distinct RBRs to ubiquitinate the same substrate? Another example of an RNA-mediated process controlled by an RBR is ARA54 and its interaction with the transcription regulator androgen receptor, which is governed by the androgen receptor co-regulator signature FXXL(F/Y) motif found near the C-terminus of ARA54 [73,74]. However, the question of how ARA54 and ubiquitin directly regulate the androgen receptor is still unanswered. Likewise, the transcription factor 4EHP [also known as EIF4E2 (eukaryotic translation initiation factor 4E family member 2)], an mRNA cap-binding protein that contributes to the inhibition of 5′→3′ mRNA tethering [75], can be ubiquitinated by HHARI [76]. Perhaps the ubiquitination of 4EHP by HHARI causes an allosteric change or leads to the cellular turnover of 4EHP to allow for efficient protein translation? Future studies clarifying and expanding on the role of RBRs in DNA repair and RNA processes are needed.

RBRs interacting with other ubiquitination machinery

There are numerous reports of RBR interactions with other ubiquitination pathway members. For example, parkin interacts with SUMO-1 (small ubiquitin-related modifier 1) and this association appears to modulate the activity of parkin as well as enhancing the import of parkin into the nucleus [77]. Likewise, parkin associates with and ubiquitinates the SUMO E3 ligase RanBP2 (RAN-binding protein 2) [78]. Parkin-mediated turnover of RanBP2 directly affects the intracellular levels of the SUMOylated histone deacetylase HDAC4 [78], an enzyme involved in DNA packing and transcriptional regulation. Taken together, these observed parkin interactions with SUMO-1 and RanBP2 further support a role for parkin in DNA and RNA processes. Parkin can also interact with 26S proteasomal subunits through its Ubl domain [30,7982] and 20S proteasomal subunits through its BRcat and Rcat domains [83], suggesting different modes of interaction and/or recruitment can occur between the RBRs and the proteasome. TRIAD1 is another example, as it can interact with the E3 ligase MDM2 (murine double minute 2); however, in this instance, TRIAD1 is actually a substrate of MDM2 [84]. A suggested reason for TRIAD1 being ubiquitinated by MDM2 is to control p53 apoptosis signalling through balancing TRIAD1-dependent activation of p53 and MDM2-mediated destabilization of p53 [84]. HOIP has also been shown to interact with the ISG15 (interferon-induced 15 kDa protein) E3 ligase TRIM25 (tripartite motif-containing 25) [85], an enzyme implicated in the innate immune response against viral infection [86], and Gumby, a linear deubiquitinase involved in modulating the Wnt signalling pathway [87]. Clearly, the RBR E3 ligases are proposed to regulate, or be regulated, by other ubiquitination pathway proteins involved in a multitude of cellular processes.

Another interesting and recent development is the observation that HHARI and TRIAD1 can interact with CRLs in a NEDD8 (neural-precursor-cell-expressed developmentally down-regulated 8)-dependent manner [37]. The RBR E3 enzyme Parc (also known as Cul9) also contains a Cul7-like domain that can bind to the typical CRL partners including Rbx1 (RING-box 1, E3 ubiquitin protein ligase) and NEDD8 [88,89]. Parc appears to have originated from a gene fusion event between an RBR Ariadne gene and Cul7 gene [20,22].

RBR regulation by kinases

Parkin, TRIAD3, HOIP and HOIL-1 are the only RBRs to date that have been proposed as potential targets of protein kinases. For example, parkin can be phosphorylated by numerous kinases including LRRK2 (leucine-rich repeat kinase 2) [90], LIM kinase-1 [91], CASK (Ca2+/calmodulin-activated serine kinase) [92], PICK1 (protein interacting with PRKCA 1) [93], Cdk5 (cyclin-dependent kinase 5) [94,95], c-Abl (tyrosine protein kinase ABL1) [96,97], CK1 (casein kinase 1) [95,98], PKA (protein kinase A) [98], PKC (protein kinase C) [98], and PINK1 (PTEN-induced putative kinase 1) [99], with each having preferential phosphorylation sites in the Ubl, RING0, RING1 and BRcat domains. With the exception of PINK1, where phosphorylation of Ser65 in the Ubl causes an increase in parkin activity [100102], the aforementioned kinases generally appear to attenuate the activity of parkin, possibly though protein aggregation as demonstrated with Cdk5 and CK1 [95]; however, the molecular basis of this activity loss is still unclear. In the case of TRIAD3 and the LUBAC, the kinases identified {RIP-1 (receptor-interacting serine/threonine-protein kinase-1) for TRIAD3 [103], MuSK (muscle, skeletal, receptor tyrosine kinase) for HOIP [104] and PKC for HOIL-1 [105]} have only been observed by immunoprecipitation and yeast-two hybrid experiments, and, to date, the sites of phosphorylation have not been identified and their downstream effects are still unknown. Does the phosphorylation of other RBRs also cause the loss of RBR ubiquitination activity due to aggregation? Future studies will hopefully further clarify the role of kinases in RBR regulation.

In search of RBR substrates using MS

Recent MS studies have reported numerous parkin-binding proteins and substrates [59,106,107]. In one of these studies, MS in combination with SILAC (stable isotope labelling by amino acids in cell culture) and mitochondrial depolarization with CCCP (carbonyl cyanide m-chlorophenylhydrazone) was used to induce parkin recruitment to the mitochondria. As a result, ~90 different proteins with modified concentration levels were identified [106]. These included increased concentrations of proteins related to autophagy and the ubiquitin proteasome system, as well as decreased concentrations of outer mitochondrial membrane proteins of known parkin substrates involved in mitophagy including mitofusins 1 and 2, TOMM70A, and MIRO1 (mitochondrial Rho GTPase 1) and MIRO2 [106]. Remarkably, another study used SILAC in combination with quantitative diGly capture proteomics to identify parkin-dependent ubiquitination targets and astoundingly found ~4800 non-redundant ubiquitination sites in ~1700 proteins [107]. Surprisingly, this observation is orders of magnitude greater in terms of potential parkin substrates and ubiquitination sites than the previous 15 years of research combined. These researchers also found that parkin predominantly associated with the proteasome and mitochondrial proteins in response to CCCP-induced depolarization. Finally, another group identified 203 possible parkin-binding proteins using TAP (tandem affinity purification) interaction screens with MS and confirmed two of their hits [LRPPRC (leucine-rich pentatricopeptide repeat-containing) and TOMM70A] by immunoprecipitation [59]. Taken together, there are some commonalities that can be drawn from these studies that further support the role of parkin in mitochondrial mitophagy. For example, numerous proteins involved in mitochondrial clearance including mitofusin 1/2, MIRO1/2, mitochondrial fission 1 protein [106,107] and TOMM70A [59,106,107] are all identified as parkin interactors/substrates. What is perplexing is how similar methods can come up with such large differences in the number of possible substrates for parkin; however, these exciting results do provide a possible roadmap for further investigations into parkin and its interacting partners in the cell.

With the advent of high-throughput MS studies to identify protein–protein interactions and their interaction networks, it will be important to verify these parkin interactors and substrates by other methods as well to increase the confidence that the screens are reliable and reproducible under different conditions. This also raises an interesting question: would a similar strategy using MS be appropriate to identify interacting partners and/or substrates for the other RBR E3 ligases?

A wealth of three-dimensional structural information now exists for the RBR E3 ligases including multidomain and individual domain structures determined from X-ray crystallographic or NMR spectroscopic data. Multidomain structures include the RBR regions from parkin [3436] and HHARI [42], and the C-terminal region from HOIP [43] (Figure 3). These structures have allowed for the juxtaposition of different regions to be assessed in terms of E3 ligase activity and have uncovered unique regions of each protein that alter catalysis (i.e. RING0 of parkin, Ariadne of HHARI and helical base of HOIP). In addition individual structures of many of the domains depicted in Figure 2 have been determined including the Ubl (parkin and HHARI), PUB (HOIP), UBA or UBA-like (HHARI and HOIP), NZF or NZF-like (HOIL-1 and parkin), RING1 (parkin, HHARI and RNF144A), BRcat (parkin, HHARI and HOIP), and Rcat (parkin, HHARI and HOIP) domains (Figure 3). Furthermore, the structure of the RWD domain present in ARA54 is expected to be similar in structure to that determined in other E3 ligases such as FANCL (Fanconi anaemia, complementation group L) [108] and RNF25 (PDB codes 2DAY and 2DMF). As described in the Introduction section, the structures of some RBR domains did not conform to expectations and, therefore, have provided new insights into their functions.

Catalogue of three-dimensional structures for RBR E3 ubiquitin ligases

Figure 3
Catalogue of three-dimensional structures for RBR E3 ubiquitin ligases

The upper panels show cartoon representations of multi-domain structures for (A) RING0–RBR from human parkin (PDB code 4I1F [35]; also PDB code 4K7D [34] and PDB code 4BM9 [36]), (B) human HHARI (PDB code 4KBL [42]) and (C) C-terminus of human HOIP (PDB code 4LJP [43]). The lower panels (DL) show cartoon diagrams of three-dimensional structures of the individual domains for (D) Ubl domains from parkin (PDB code 2ZEQ [136]) and HOIL-1 (PDB code 2LGY [81]), (E) PUB domain from HOIP (PDB code 4JUY), (F) UBA-like domains from HHARI (PDB code 4KBL [42]) and HOIP (PDB code 4DBG [32]), (G) RWD from the E3 ligase FANCL (PDB code 3K1L [108]), (H) NZF and double NZF-like domains from HOIL-1 (PDB code 3B0A [39]) and parkin (PDB code 4I1F [35]), (I) RING1 domains from parkin (PDB code 4I1F [35]), HHARI (PDB code 4KBL [42]) and RNF144A (PDB code 1WIM), (J) BRcat domains from parkin (PDB code 4I1F [35] and PDB 2JMO [116]), HHARI (PDB code 4KBL [42]) and HOIP (PDB code 2CT7), (K) Ariadne domain from HHARI (PDB code 4KBL [42]), and (L) Rcat domains from parkin (PDB code 4I1F [35] and PDB code 2LWR [48]), HHARI (PDB code 4KBL [42] and PDB 2M9Y [117]) and HOIP (PDB code 4LJP [43]). The colour scheme for each individual domain and multidomain structures are as shown in Figure 2. Representative secondary structures are also labelled.

Figure 3
Catalogue of three-dimensional structures for RBR E3 ubiquitin ligases

The upper panels show cartoon representations of multi-domain structures for (A) RING0–RBR from human parkin (PDB code 4I1F [35]; also PDB code 4K7D [34] and PDB code 4BM9 [36]), (B) human HHARI (PDB code 4KBL [42]) and (C) C-terminus of human HOIP (PDB code 4LJP [43]). The lower panels (DL) show cartoon diagrams of three-dimensional structures of the individual domains for (D) Ubl domains from parkin (PDB code 2ZEQ [136]) and HOIL-1 (PDB code 2LGY [81]), (E) PUB domain from HOIP (PDB code 4JUY), (F) UBA-like domains from HHARI (PDB code 4KBL [42]) and HOIP (PDB code 4DBG [32]), (G) RWD from the E3 ligase FANCL (PDB code 3K1L [108]), (H) NZF and double NZF-like domains from HOIL-1 (PDB code 3B0A [39]) and parkin (PDB code 4I1F [35]), (I) RING1 domains from parkin (PDB code 4I1F [35]), HHARI (PDB code 4KBL [42]) and RNF144A (PDB code 1WIM), (J) BRcat domains from parkin (PDB code 4I1F [35] and PDB 2JMO [116]), HHARI (PDB code 4KBL [42]) and HOIP (PDB code 2CT7), (K) Ariadne domain from HHARI (PDB code 4KBL [42]), and (L) Rcat domains from parkin (PDB code 4I1F [35] and PDB code 2LWR [48]), HHARI (PDB code 4KBL [42] and PDB 2M9Y [117]) and HOIP (PDB code 4LJP [43]). The colour scheme for each individual domain and multidomain structures are as shown in Figure 2. Representative secondary structures are also labelled.

Close modal

Although some of the domains are particular to an individual RBR protein, such as the PUB and RWD domains found in HOIP and ARA54 respectively, in general most of the domain structures are found in multiple RBR E3 ligases. Both parkin and HOIL-1 have an N-terminal Ubl domain and represent one of the earliest structures determined for the RBR ligases [79,109]. This domain shows the typical β-grasp fold for ubiquitin-type proteins and is expected to act as a protein-recruiting module. Multiple observations have shown the Ubl domain is able to interact with small motifs [UIMs (ubiquitin-interacting motifs), UBA domains and SH3 (Src homology 3) domains] with moderate affinity (10–400 μM). For example, parkin is able to interact with the UIM regions in the S5a proteasomal subunit [30,80], Eps15 [30,31] and ataxin-3 [110] as well as the SH3 domain of endophilin A1 [111]. Furthermore, the Ubl domain from parkin regulates E3 ligase activity in an auto-inhibitory fashion through interaction with its C-terminal RBR regions [28]. Structures and interaction studies show parkin utilizes the Ile44 face located on β3 to interact with all partners to date [30,110,111]. Interestingly, the HOIL-1 Ubl possesses an insertion between β1–β2 that is expected to lend specificity to this module [81]. This region and the C-terminus of helix α1 are used to form a surface on the opposite side from the Ile44 patch to recruit the UBA domain of HOIP, a requisite for linear polyubiquitin chain formation [32,81]. Although HOIP is also auto-inhibited for ubiquitination, these differences in Ubl structure and modes of interaction indicate its auto-inhibitory mechanism is not understood.

A common feature of the RBR E3 ligases is the presence of regions (UBA, NZF and ZnF domains) important for the recruitment of ubiquitin or polyubiquitin chains. Structures of the UBA domains from HHARI [42] and HOIP [32] appear very similar (RMSD=2.5 Å) yet neither appears to participate in interactions consistent with typical UBA domains (i.e. Dsk1 and PLIC [112]). For example, the HOIP UBA domain possesses a conserved GF sequence between helices α1 and α2 yet uses an extra α-helix to recruit the HOIL-1 Ubl domain [32]. Parkin, HOIP and HOIL-1 all have Zn2+-binding domains (NZF and ZnF) on the N-terminal side of the RBR module. HOIL-1 has been shown to have specificity for linear di-ubiquitin binding (Kd ~17 μM), whereby the distal ubiquitin interacts primarily with side chains from the NZF domain whereas the proximal ubiquitin utilizes an α-helix that lies C-terminal to the NZF domain [39]. The structure of the NZF from HOIL-1 reveals this domain co-ordinates a single Zn2+ ion via Cys4 co-ordination groups and has conserved tryptophan and asparagine residues that help maintain the protein fold as previously observed in the RanBP2 and Npl4 NZF domains [39]. The HOIL-1 NZF domain also follows the consensus sequence X4WXCX2CX3NX6CX2CX5 closely [113], as do the two NZF domains from HOIP, so these would be expected to have similar structures. On the basis of structural similarity with HOIL-1, it is not surprising that HOIP NZFs can also interact with ubiquitin [38], although the structural basis for this HOIP–ubiquitin interaction has not been shown yet. Originally missed in sequence comparisons, the discovery of the RING0 domain in parkin from limited proteolysis and MS experiments showed this protein also contained an additional Zn2+-binding domain [33]. It was recognized that the parkin RING0 domain would co-ordinate two Zn2+ ions in a linear fashion and that the N-terminal portion of RING0 retained some sequence similarity to the NZF domain in HOIL-1 [33]. Upon closer inspection (Figure 3H), it appears that that the second Zn2+-binding region in RING0 adopts a similar fold as the HOIL-1 NZF domain (RMSD=1.7 Å) using valine/glutamine residues in place of tryptophan/asparagine in the consensus and having a two-residue insertion within the second zinc-co-ordinating pair of cysteines. Furthermore, even though the first Zn2+ site in parkin is non-contiguous, the arrangement of the metal ion-co-ordinating residues also fits the NZF fold for HOIL-1 (RMSD=1.7 Å), although this site uses Cys3His co-ordination in parkin. On the basis of this structural comparison, it appears as though the RING0 domain has an unusual double NZF-like fold. With these insights it is perhaps not surprising that this double NZF-like structure has been shown to interact with ubiquitin using peptide array experiments [28]. However, the biological consequences of this interaction and those for HOIL-1 require further investigation.

Based on the RING–HECT hybrid mechanism, the RING1 domain of RBR proteins is expected to be the E2-recruiting module [29]. Indeed several studies show that deletion or mutation of RING1 in parkin [26] and HHARI [114] leads to either decreased ubiquitination or interaction with the E2 enzyme UbcH7 (UBE2L3). These observations are consistent with structures of the RING1 domains from parkin [3436], HHARI [42] and RNF144A which all show similar folds (RMSD=0.54–1.2 Å). Furthermore, the RING1 domains all adopt cross-brace Zn2+ ion co-ordination for two sites typical of other RING E3 ligase proteins such as TRAF6 [6] and c-Cbl [5] (Figure 4). There are some differences however between the RING1 domains in some of the RBR proteins that suggest E2 recruitment is perhaps not as straight-forward as in the canonical RING E3 ligases. For example, both parkin and HHARI have one or two extra residues within the L2 loop, a region shown to be important for interactions with E2 enzymes [17]. Furthermore, parkin contains a threonine residue rather than the traditional isoleucine/valine residue in L1 and lacks the highly conserved proline in L2 of the canonical RING E3 ligases [17]. It remains to be seen how these differences affect ubiquitination activity.

Comparison of RING domain structures for RBR and canonical RING E3 ubiquitin ligases

Figure 4
Comparison of RING domain structures for RBR and canonical RING E3 ubiquitin ligases

(A) The structures of the RING1 domain from parkin (PDB code 4I1F [35]; orange) is superimposed with the RING domain from c-Cbl (PDB code 1FBV [5]; grey). The superposition was done using the Cα positions of the eight Zn2+-co-ordinating residues in each protein. The two regions (L1 and L2) in each protein and residues in parkin expected to be key for E2 interaction are indicated. (B) Sequence comparison for the RING1 domains of the RBR proteins parkin, HHARI and HOIP with representative RING E3 ligases c-Cbl, TRAF6 and cIAP2 showing important residues for E2 recruitment in L1 and L2 loops (red dot).

Figure 4
Comparison of RING domain structures for RBR and canonical RING E3 ubiquitin ligases

(A) The structures of the RING1 domain from parkin (PDB code 4I1F [35]; orange) is superimposed with the RING domain from c-Cbl (PDB code 1FBV [5]; grey). The superposition was done using the Cα positions of the eight Zn2+-co-ordinating residues in each protein. The two regions (L1 and L2) in each protein and residues in parkin expected to be key for E2 interaction are indicated. (B) Sequence comparison for the RING1 domains of the RBR proteins parkin, HHARI and HOIP with representative RING E3 ligases c-Cbl, TRAF6 and cIAP2 showing important residues for E2 recruitment in L1 and L2 loops (red dot).

Close modal

A low resolution structure (6.5 Å) of the C-terminus of parkin in complex with the Ubl domain has been modelled that shows that the Ubl domain interacts at a site near the L1/L2 region of RING1 [34]. Furthermore, structures of parkin also show the tether region (Figure 3A, shown in yellow) sits between these two loops and may interfere with E2 recruitment [3436]. Perhaps as a result of this tether interaction with RING1, NMR studies showed poor affinity for parkin with UbcH7 that could be partly enhanced using mutations in the tether to disrupt its association with RING1 [34]. In contrast, direct binding experiments using surface plasmon resonance show much tighter binding of UbcH7 to both full-length parkin and parkin lacking the Ubl domain (Kd ~4–7 μM) [115]. It is interesting that despite very similar overall folds between the parkin and HHARI RING1 domains, HHARI shows affinity for UbcH7 between 200 and 500 nM using isothermal calorimetry [42], nearly an order of magnitude tighter than parkin.

The structure of the parkin BRcat domain shows a novel fold compared with other zinc-binding motifs where one Zn2+ ion is sandwiched between two pairs of β-strands and the second Zn2+ ion forms a gag-knuckle-type fold [116]. This linear zinc-binding arrangement is also found in HHARI [42] and HOIP (PDB code 2CT7). Although comparison of BRcat structures from multiple crystal and NMR structures provides a 0.8–2.0 Å RMSD between structures, the BRcat appears to be the most plastic of the three domains. In particular the β3–β4 loop appears to adopt multiple conformations in the NMR structure [116] and was poorly resolved in two of the three parkin crystal structures [35,36]. In HHARI and HOIP, this loop is 5–6 residues shorter, lacking several glycine residues found in parkin. Although first predicted to be a conduit between the RING1 and Rcat domains [116], the structures of parkin and HHARI show the BRcat occupies very different spatial locations in these two proteins - isolated in parkin and more central in HHARI (Figure 3). Thus although the conservation of the BRcat domain suggests it is more than a linker, the exact function of the BRcat domain remains a mystery.

Thought to form a canonical RING domain for many years, structures of the Rcat domain in parkin [3436,48], HHARI [42,117] and HOIP [43] show that it adopts the same fold as the BRcat domain, an observation that was not originally predicted from sequence analyses. A significant difference is the presence of a conserved cysteine residue (Cys431 in parkin, Cys359 in HHARI and Cys885 in HOIP) in the Rcat domain that is required for ubiquitin transfer from the E2~ubiquitin conjugate to a substrate [29,35,44,45,48]. The Rcat domains show good agreement between multiple structures of parkin (RMSD=0.9–1.3 Å) and between different proteins (parkin–HHARI, RMSD=0.9 Å; parkin–HOIP, RMSD=1.6 Å). In the parkin, HHARI and HOIP structures, the catalytic cysteine is buried against the RING0 [3436], Ariadne [42] and helical base [43] domains respectively, rendering the E3 ligases inactive. In all three cases hydrophobic residues at the extreme C-termini of the Rcat domains (Trp462 and Phe463 in parkin, Val374, Arg391 and Tyr392 in HHARI, and Met886 and Tyr902 in HOIP) mediate this interaction (Figure 5). It is interesting that NMR structures of the isolated Rcat domains from parkin [48] and HHARI [117] show some deviation in the position of this C-terminal region compared with the X-ray structures. Since it is expected that the Rcat interaction with the RING0 or Ariadne domains must be relieved in order to activate the E3 ligase, it is tempting to speculate that the position of the C-terminal helix and adjoining regions in the activated E3 ligase might take on the appearance of the position observed in the NMR structures of parkin and HHARI Rcat domains [48,117].

Similarity of catalytic sites for parkin and NEDD4

Figure 5
Similarity of catalytic sites for parkin and NEDD4

(A) The interface between the Rcat (pink ribbon) and RING0 (wheat surface) domains for parkin are shown highlighting important residues near the catalytic site. The three residues (Cys431, His433 and Glu444) important for ubiquitin transfer are shown in addition to several residues found at the Rcat (Trp462 and Phe463), RING0 (Lys162, Trp183, Pro180 and Val186) interface (PDB code 4I1F [35]). (B) A portion of the interface between the N-lobe (grey surface) and the catalytic region of the C-lobe (green ribbon) in NEDD4 is shown (PDB code 4BBN [122]). The catalytic cysteine (Cys867) resides between two β-strands similar to the position in parkin and HHARI. Two other residues important for catalysis (His865 and Asp900) are arranged in a mirror fashion compared to the Rcat domain in parkin and HHARI although Asp900 is not visible in the X-ray structure. In both structures the two β-strands were superimposed to achieve similar protein orientations.

Figure 5
Similarity of catalytic sites for parkin and NEDD4

(A) The interface between the Rcat (pink ribbon) and RING0 (wheat surface) domains for parkin are shown highlighting important residues near the catalytic site. The three residues (Cys431, His433 and Glu444) important for ubiquitin transfer are shown in addition to several residues found at the Rcat (Trp462 and Phe463), RING0 (Lys162, Trp183, Pro180 and Val186) interface (PDB code 4I1F [35]). (B) A portion of the interface between the N-lobe (grey surface) and the catalytic region of the C-lobe (green ribbon) in NEDD4 is shown (PDB code 4BBN [122]). The catalytic cysteine (Cys867) resides between two β-strands similar to the position in parkin and HHARI. Two other residues important for catalysis (His865 and Asp900) are arranged in a mirror fashion compared to the Rcat domain in parkin and HHARI although Asp900 is not visible in the X-ray structure. In both structures the two β-strands were superimposed to achieve similar protein orientations.

Close modal

All structures show evidence of a catalytic triad comprising Cys431, His433 and Glu444 in parkin [3436,48], Cys359, His361 and Glu370 in HHARI [42,117] and Cys885, His887 and Gln895 in HOIP [43]. In vitro experiments show that ubiquitin can be conjugated to the catalytic cysteine or the serine analogue and that substitution of any one of these residues renders the E3 ligase inactive [29,3436,42,44,45,48], although cellular experiments show that Glu444 in parkin seems less important [35]. This would indicate that these residues are required for the loading and unloading of ubiquitin during a catalytic cycle. One proposal is that the histidine imidazole ring is polarized by the glutamate acidic side chain allowing the thiol group of the cysteine to become more nucleophilic towards the thioester linkage of the E2~ubiquitin donor [35,36]. For HHARI, this appears to have the largest effect on the unloading of the ubiquitin from the Rcat catalytic cysteine residue [42]. The structures partly support this idea whereby the imidazole ring is tipped towards the glutamate carboxylate and NMR data shows ND1 of His433 in parkin and His359 in HHARI are deprotonated [48,117], a requirement to hydrogen bond with the cysteine thiol side chain. Oddly however the cysteine side chain is pointed opposite to the histidine side chain (Figure 5) in a misaligned configuration similar to that observed in deubiquitinase enzymes [118121]. Furthermore, in this configuration it is difficult to see how the cysteine side chain pKa value would be altered to allow for thioester formation with the incoming ubiquitin protein. This indicates that binding of either the E2~ubiquitin, substrate or ubiquitinated substrate may have a role in the realignment and activation of the catalytic cysteine residue of the RBR E3 ligases.

The fact that the RBR E3 ligases are able to accept an ubiquitin from an E2~ubiquitin conjugate and form a short-lived Rcat~ubiquitin thioester prior to ubiquitin transfer to a substrate [29,35,44,45,48] parallels that for the HECT E3 ligases [12,13,15,16,122] (Figure 1). Intriguingly a comparison of the catalytic sites for parkin and HHARI show the arrangements of their catalytic residues are similar to that observed for a typical HECT E3 ligase. For example, the catalytic triads for both the RBR E3 ligase parkin and the HECT E3 ligase NEDD4 reside on anti-parallel β-strands and the intervening loop (Figure 5). Furthermore, the arrangement of the catalytic cysteine and histidine residues in parkin and HHARI appear to be a mirror image of that observed in NEDD4. The residue corresponding to Glu444 in parkin (Asp900 in NEDD4) is not observed in crystallographic data, but is required for catalysis [122]. Another interesting observation is the close presence of the N-lobe in NEDD4 to the catalytic site, a similarity to the RING0 domain in parkin (or Ariadne in HHARI).

Structures of parkin, HHARI and HOIP show that the cysteine residue (parkin Cys431, HHARI, Cys357 and HOIP Cys885) in the Rcat domain essential for ubiquitin transfer is buried against the RING0 [3436], Ariadne [42] and helical base [43] domains respectively. Multiple experiments have shown that truncated forms of parkin lacking the Ubl, RING0, or RING0–RING1 domains [34], or HHARI lacking the Ariadne domain [42], support robust ubiquitination. Together these observations support the initial experiments by Walden and co-workers [28,123] that showed parkin, and now other RBR E3 ligases, exist in an auto-inhibited state that must undergo significant conformational change to relieve interactions of the Ubl and RING0/Ariadne/helical base domains to support ubiquitination. A need for conformational change is also exhibited by the large distances (32 Å in parkin) between the RING1 domain, where the E2 conjugate enzyme is predicted to bind, and Rcat domain where the cata-lytic cysteine resides, that must be traversed to transfer the ubiquitin cargo in all RBR E3 ligases (Figure 6).

Evidence for flexibility in the RBR E3 ubiquitin ligases

Figure 6
Evidence for flexibility in the RBR E3 ubiquitin ligases

(A) The three-dimensional structures of parkin (PDB code 4I1F [35]) and HHARI (PDB code 4KBL [42]) are shown following superposition of their RING1 domains. This presentation shows the Rcat domains for the two proteins are found at opposite ends of the respective structures with respect to the location of the RING1 domain with large distances between the RING1 and Rcat domains (~32 Å in parkin and ~67 Å in HHARI) that must somehow be bridged for ubiquitin transfer. Regions not modelled in the parkin structure, probably due to flexibility, are indicated by broken lines. For clarity the UBA-like and Ariadne domains from HHARI are not shown. (B) The position of the BRcat domains in parkin and HHARI are shown after superposition of the RING1 domains. The position of the BRcat domain deviates ~22 Å between the parkin and HHARI structures due to an approximate 90° difference in the tilt of the RING1–BRcat interdomain helix. Only the RING1 domain from parkin is shown for clarity. The colour schemes used in (A) and (B) are as described previously in Figures 2 and 3.

Figure 6
Evidence for flexibility in the RBR E3 ubiquitin ligases

(A) The three-dimensional structures of parkin (PDB code 4I1F [35]) and HHARI (PDB code 4KBL [42]) are shown following superposition of their RING1 domains. This presentation shows the Rcat domains for the two proteins are found at opposite ends of the respective structures with respect to the location of the RING1 domain with large distances between the RING1 and Rcat domains (~32 Å in parkin and ~67 Å in HHARI) that must somehow be bridged for ubiquitin transfer. Regions not modelled in the parkin structure, probably due to flexibility, are indicated by broken lines. For clarity the UBA-like and Ariadne domains from HHARI are not shown. (B) The position of the BRcat domains in parkin and HHARI are shown after superposition of the RING1 domains. The position of the BRcat domain deviates ~22 Å between the parkin and HHARI structures due to an approximate 90° difference in the tilt of the RING1–BRcat interdomain helix. Only the RING1 domain from parkin is shown for clarity. The colour schemes used in (A) and (B) are as described previously in Figures 2 and 3.

Close modal

As described the structures of the individual domains within the RBR regions appear remarkably similar (Figure 3). Yet upon further inspection, there are remarkable differences for the proximity and orientation of RING1, BRcat and Rcat domains between parkin and HHARI (Figure 6). This may reflect different mechanisms of activation used during the ubiquitination cycle. Alternatively, the structures may provide hints about the innate flexibility within the RBR domain structure and offer a snapshot of the ensuing conformational changes required for activation. For example, the majority of the parkin structures have poor electron density or have high thermal factors for connecting loop regions including Ser218–Glu221 (RING0-RING1 linker), Gly355–Lys358 (BRcat), Ala379–Gln389 and Ala406–Lys412 (BRcat–Rcat tether [3436]). Furthermore, multiple parkin models from a single crystallographic data set show an approximate 13–16 Å translation of the BRcat domain between models [34]. Comparing parkin and HHARI structures also shows large differences in the positions of the BRcat and Rcat domain (Figure 6). In parkin, the BRcat and Rcat domains are separated by approximately 65 Å (centre–centre), whereas in HHARI these domains are nearly 30 Å closer to each other. Indeed, it is remarkable that these two RBR proteins show completely different relationships between the three domains despite the high similarities between individual like domains. A major difference here is that the 145-residue Ariadne domain of HHARI forms a four-helix bundle that intercalates between the BRcat and Rcat domains (Figure 3B). In parkin, the RING1, RING1–BRcat helical linker and a portion of RING0 lie between the BRcat and Rcat domains, thus pushing the BRcat and Rcat domains further apart than in HHARI. The tilt of the RING1–BRcat helical linker, found in both parkin and HHARI, could also account for these observed orientation differences. In both cases, this helix is bent near its centre, but is rotated ~90° in HHARI compared with the parkin structure, giving rise to a different spatial location of the BRcat domain (22 Å centre–centre) with respect to the RING1 domains in the two proteins (Figure 6). This observation and its effect on the position of the BRcat domain suggest the RING1–BRcat helical linker may be a key player in dictating the conformational changes required for activating the RBR E3 ligases.

It is clear from recent structural and biochemical work on parkin [28,34-36], HHARI [37,42], TRIAD1 [37], and HOIP and HOIL-1 [44,45], that the RBRs are auto-inhibited by subtly different mechanisms. Each RBR must presumably have several binding partners to achieve their ultimate function of ubiquitinating a lysine residue on a target substrate. They must have a productive interaction with an E2 enzyme, and they must also come into proximity with a substrate. In addition, there is evidence that parkin [28,124] and HOIP [43,44] both interact non-covalently with ubiquitin as part of their mechanism. Therefore it is possible to imagine several modes by which auto-inhibition may be achieved either through blocking an E2- or substrate-binding site and/or some auxiliary protein-binding site. Recent advances partially answer the question of how activation is achieved. In the case of parkin, there are at least three forms of auto-inhibition: the Ubl domain in its wild-type form interacts with the rest of parkin and blocks self-ubiquitination [28,48]; a helical region in the tether between the BRcat and Rcat domains contains a tryptophan residue that docks into the proposed E2-binding site on RING1 [3436]; and the RING0 domain packs tightly against the catalytic cysteine residue of the Rcat in at least one conformation [3436]. It is not yet understood how either the BRcat–Rcat tether or RING0 domain will be prised from their binding slots in parkin to allow for E2 binding and/or release the Rcat catalytic cysteine residue to form a thioester with ubiquitin. Indeed, removal of the key tryptophan residue in the BRcat–Rcat tether activates parkin for auto-ubiquitination, yet the RING0–Rcat interaction is presumably still intact [3436]. This suggests that E2 binding to the RING1 domain may induce some conformational change that influences the RING0–Rcat interaction. Similarly, a BRcat–Rcat fragment that retains the tryptophan residue, but has no RING0 or RING1 domain, is also highly active [125,126]. However, the inhibition achieved by the Ubl domain is relieved by pathogenic mutations within that domain [28], and by phosphorylation of Ser65 by the mitophagy-specific kinase, PINK1 [100102]. In addition, several parkin-binding partners are recruited through the Ubl domain, including endophilin A1 [111], Eps15 [30,31], proteasomal subunits [30,80,127] and ataxin-3 [110,127], suggesting that parkin activation may be achieved via a target or substrate-binding mechanism. There are also multiple reported post-translational parkin modifications outside of the Ubl domain, including S-nitrosylation [128,129] and NEDDylation [130], which have been reviewed recently [123].

Although parkin may employ an E2-blocking mechanism for regulation of activity, the same does not seem to be true for HHARI. In its full-length context, HHARI interacts with UbcH7 with a dissociation constant of 540 nM [42], which is a significantly higher affinity than typically displayed between E2s and E3s in the micromolar range [2,3]. Meanwhile, the C-terminal Ariadne domain, unique to the HHARI/TRIAD proteins [20], sits in between the BRcat and Rcat domains blocking access to the catalytic cysteine in the Rcat and lowers the activity in full-length HHARI [42]. Removal of the Ariadne domain is sufficient to release HHARI activity, and addition of the Ariadne domain in trans restores inhibition [42]. How this domain is released in a cellular environment is as yet unclear. However, a recent study found that both HHARI and TRIAD1, both of which contain an Ariadne domain, are activated by interaction with the NEDDylated forms of the CRLs [37]. This interaction may provide the means in cells to activate Ariadne RBR E3 ligases. Interestingly, there is also a cullin homology domain in the RBR ligase Parc [131], and evidence to suggest parkin forms a complex with CRLs [132]. Thus there is potential for an as-yet-unappreciated general role for cullins in RBR ligase activation.

Unlike the other RBRs, the LUBAC uses a different mechanism of auto-inhibition; however, the molecular basis of this auto-inhibition is presently unclear and probably more complex. LUBAC contains two RBR-containing proteins, HOIP and HOIL-1 [38,65,133,134]. As with the other RBR ligases, the RBR and helical base domain, which is unique to HOIP, are sufficient to recapitulate HOIP activity [4345]. However, full-length HOIP is inactive [44,45] and, although removal of the N-terminal 700 amino acids releases HOIP activity [44], it is not yet clear what intramolecular arrangements are involved in the auto-inhibition of HOIP. Nevertheless, in vivo data show that HOIP activity is released through its interaction with the other components of LUBAC, namely SHARPIN and HOIL-1 [38,133,134]. Interestingly, a recent study suggests that parkin can team up with the LUBAC to enhance linear ubiquitination of NEMO that is dependent on both parkin's Ubl domain and its RBR ligase activity [135]. Clearly, further structural and biochemical details of the entire LUBAC are needed to better understand its modes of regulation.

Differences in modes of RBR ligase auto-inhibition will probably be reflected by differences in modes of RBR activation. Understanding how these RBRs are activated, on a molecular level, is a major challenge in our present understanding of their function(s) and activity.

ANKIB1

ankyrin repeat- and IBR domain-containing 1

BRcat

benign-catalytic

CCCP

carbonyl cyanide m-chlorophenylhydrazone

Cdk5

cyclin-dependent kinase 5

cIAP2

cellular inhibitor of apoptosis 2

CK1

casein kinase 1

CPH

Cul7, Parc and HERC2 proteins

CRL

Cul-RING-ligase

Cul

cullin

Eps15

epidermal growth factor receptor pathway substrate 15

FANCL

Fanconi anaemia, complementation group L

HDAC

histone deacetylase

HECT

homologous with E6-associated protein C-terminus

HOIL-1

haem-oxidized IRP2 ubiquitin ligase 1

HOIP

HOIL-1-interacting protein

IBR

InBetweenRING

LUBAC

linear ubiquitin chain assembly complex

MDM2

murine double minute 2

MIRO

mitochondrial Rho GTPase

NEDD

neural-precursor-cell-expressed developmentally down-regulated

NEMO

NF-κB essential modulator

NF-κB

nuclear factor κB

NZF

Npl4 ZNF

Parc

parkin-like cytoplasmic p53-binding protein

PINK1

PTEN-induced putative kinase 1

PKC

protein kinase C

RanBP2

RAN-binding protein 2

RBR

RING-BetweenRING-RING/RING1-BRcat-Rcat

Rcat

required-for-catalysis

RNF

RING finger protein

RWD

RING finger and WD repeat-containing

SH3

Src homology 3

SHARPIN

SHANK-associated RH domain interactor

SILAC

stable isotope labelling by amino acids in cell culture

SUMO

small ubiquitin-related modifier

TOMM70A

translocase of outer mitochondrial membrane 70 homologue A

TRAF6

tumour-necrosis-factor-receptor-associated factor 6

TRIAD

two RING fingers and a DRIL (double RING finger linked)

UBA

ubiquitin-associated

UBE2L

ubiquitin-conjugating enzyme E2L

UIM

ubiquitin-interacting motif

Ubl

ubiquitin-like

ZNF

zinc finger

The RBR E3 ligases are at the centre of an exciting and rapidly expanding area of study in ubiquitin biology. In compiling the literature for the present review, we have tried to be as comprehensive and inclusive as possible. We regret that some publications may have been unintentionally overlooked.

This work was supported by the Canadian Institutes of Health Research [grant number MOP-14606], the Canada Research Chairs Program (to G.S.S) and an EMBO Young Investigator award (to H.W). D.E.S. is the recipient of postdoctoral fellowships from the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada.

1
Hershko
 
A.
Ciechanover
 
A.
 
The ubiquitin system
Annu. Rev. Biochem.
1998
, vol. 
67
 (pg. 
425
-
479
)
2
Deshaies
 
R. J.
Joazeiro
 
C. A.
 
RING domain E3 ubiquitin ligases
Annu. Rev. Biochem.
2009
, vol. 
78
 (pg. 
399
-
434
)
3
Metzger
 
M. B.
Pruneda
 
J. N.
Klevit
 
R. E.
Weissman
 
A. M.
 
RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination
Biochim. Biophys. Acta
2014
, vol. 
1843
 (pg. 
47
-
60
)
4
Borden
 
K. L.
Freemont
 
P. S.
 
The RING finger domain: a recent example of a sequence-structure family
Curr. Opin. Struct. Biol.
1996
, vol. 
6
 (pg. 
395
-
401
)
5
Zheng
 
N.
Wang
 
P.
Jeffrey
 
P. D.
Pavletich
 
N. P.
 
Structure of a c-Cbl–UbcH7 complex: RING domain function in ubiquitin-protein ligases
Cell
2000
, vol. 
102
 (pg. 
533
-
539
)
6
Yin
 
Q.
Lin
 
S. C.
Lamothe
 
B.
Lu
 
M.
Lo
 
Y. C.
Hura
 
G.
Zheng
 
L.
Rich
 
R. L.
Campos
 
A. D.
Myszka
 
D. G.
, et al 
E2 interaction and dimerization in the crystal structure of TRAF6
Nat. Struct. Mol. Biol.
2009
, vol. 
16
 (pg. 
658
-
666
)
7
Mace
 
P. D.
Linke
 
K.
Feltham
 
R.
Schumacher
 
F. R.
Smith
 
C. A.
Vaux
 
D. L.
Silke
 
J.
Day
 
C. L.
 
Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment
J. Biol. Chem.
2008
, vol. 
283
 (pg. 
31633
-
31640
)
8
Plechanovova
 
A.
Jaffray
 
E. G.
Tatham
 
M. H.
Naismith
 
J. H.
Hay
 
R. T.
 
Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis
Nature
2012
, vol. 
489
 (pg. 
115
-
120
)
9
Dou
 
H.
Buetow
 
L.
Sibbet
 
G. J.
Cameron
 
K.
Huang
 
D. T.
 
Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3
Nat. Struct. Mol. Biol.
2013
, vol. 
20
 (pg. 
982
-
986
)
10
Dou
 
H.
Buetow
 
L.
Sibbet
 
G. J.
Cameron
 
K.
Huang
 
D. T.
 
BIRC7–E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer
Nat. Struct. Mol. Biol.
2012
, vol. 
19
 (pg. 
876
-
883
)
11
Pruneda
 
J. N.
Littlefield
 
P. J.
Soss
 
S. E.
Nordquist
 
K. A.
Chazin
 
W. J.
Brzovic
 
P. S.
Klevit
 
R. E.
 
Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases
Mol. Cell
2012
, vol. 
47
 (pg. 
933
-
942
)
12
Huang
 
L.
Kinnucan
 
E.
Wang
 
G.
Beaudenon
 
S.
Howley
 
P. M.
Huibregtse
 
J. M.
Pavletich
 
N. P.
 
Structure of an E6AP–UbcH7 complex: insights into ubiquitination by the E2–E3 enzyme cascade
Science
1999
, vol. 
286
 (pg. 
1321
-
1326
)
13
Kee
 
Y.
Huibregtse
 
J. M.
 
Regulation of catalytic activities of HECT ubiquitin ligases
Biochem. Biophys. Res. Commun.
2007
, vol. 
354
 (pg. 
329
-
333
)
14
Maspero
 
E.
Mari
 
S.
Valentini
 
E.
Musacchio
 
A.
Fish
 
A.
Pasqualato
 
S.
Polo
 
S.
 
Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation
EMBO Rep.
2011
, vol. 
12
 (pg. 
342
-
349
)
15
Kamadurai
 
H. B.
Qiu
 
Y.
Deng
 
A.
Harrison
 
J. S.
Macdonald
 
C.
Actis
 
M.
Rodrigues
 
P.
Miller
 
D. J.
Souphron
 
J.
Lewis
 
S. M.
, et al 
Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3
eLife
2013
, vol. 
2
 pg. 
e00828
 
16
Kamadurai
 
H. B.
Souphron
 
J.
Scott
 
D. C.
Duda
 
D. M.
Miller
 
D. J.
Stringer
 
D.
Piper
 
R. C.
Schulman
 
B. A.
 
Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin–HECT(NEDD4L) complex
Mol. Cell
2009
, vol. 
36
 (pg. 
1095
-
1102
)
17
Budhidarmo
 
R.
Nakatani
 
Y.
Day
 
C. L.
 
RINGs hold the key to ubiquitin transfer
Trends Biochem. Sci.
2012
, vol. 
37
 (pg. 
58
-
65
)
18
Metzger
 
M. B.
Hristova
 
V. A.
Weissman
 
A. M.
 
HECT and RING finger families of E3 ubiquitin ligases at a glance
J. Cell Sci.
2012
, vol. 
125
 (pg. 
531
-
537
)
19
Scheffner
 
M.
Kumar
 
S.
 
Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects
Biochim. Biophys. Acta
2014
, vol. 
1843
 (pg. 
61
-
74
)
20
Marin
 
I.
Ferrus
 
A.
 
Comparative genomics of the RBR family, including the Parkinson's disease-related gene parkin and the genes of the ariadne subfamily
Mol. Biol. Evol.
2002
, vol. 
19
 (pg. 
2039
-
2050
)
21
Kitada
 
T.
Asakawa
 
S.
Hattori
 
N.
Matsumine
 
H.
Yamamura
 
Y.
Minoshima
 
S.
Yokochi
 
M.
Mizuno
 
Y.
Shimizu
 
N.
 
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
Nature
1998
, vol. 
392
 (pg. 
605
-
608
)
22
Marin
 
I.
Lucas
 
J. I.
Gradilla
 
A. C.
Ferrus
 
A.
 
Parkin and relatives: the RBR family of ubiquitin ligases
Physiol. Genomics
2004
, vol. 
17
 (pg. 
253
-
263
)
23
Morett
 
E.
Bork
 
P.
 
A novel transactivation domain in parkin
Trends Biochem. Sci.
1999
, vol. 
24
 (pg. 
229
-
231
)
24
Imai
 
Y.
Soda
 
M.
Takahashi
 
R.
 
Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity
J. Biol. Chem.
2000
, vol. 
275
 (pg. 
35661
-
35664
)
25
Shimura
 
H.
Hattori
 
N.
Kubo
 
S.
Mizuno
 
Y.
Asakawa
 
S.
Minoshima
 
S.
Shimizu
 
N.
Iwai
 
K.
Chiba
 
T.
Tanaka
 
K.
Suzuki
 
T.
 
Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase
Nat. Genet.
2000
, vol. 
25
 (pg. 
302
-
305
)
26
Zhang
 
Y.
Gao
 
J.
Chung
 
K. K.
Huang
 
H.
Dawson
 
V. L.
Dawson
 
T. M.
 
Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1
Proc. Natl. Acad. Sci. U.S.A.
2000
, vol. 
97
 (pg. 
13354
-
13359
)
27
Moynihan
 
T. P.
Ardley
 
H. C.
Nuber
 
U.
Rose
 
S. A.
Jones
 
P. F.
Markham
 
A. F.
Scheffner
 
M.
Robinson
 
P. A.
 
The ubiquitin-conjugating enzymes UbcH7 and UbcH8 interact with RING finger/IBR motif-containing domains of HHARI and H7-AP1
J. Biol. Chem.
1999
, vol. 
274
 (pg. 
30963
-
30968
)
28
Chaugule
 
V. K.
Burchell
 
L.
Barber
 
K. R.
Sidhu
 
A.
Leslie
 
S. J.
Shaw
 
G. S.
Walden
 
H.
 
Autoregulation of Parkin activity through its ubiquitin-like domain
EMBO J.
2011
, vol. 
30
 (pg. 
2853
-
2867
)
29
Wenzel
 
D. M.
Lissounov
 
A.
Brzovic
 
P. S.
Klevit
 
R. E.
 
UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids
Nature
2011
, vol. 
474
 (pg. 
105
-
108
)
30
Safadi
 
S. S.
Shaw
 
G. S.
 
Differential interaction of the E3 ligase parkin with the proteasomal subunit S5a and the endocytic protein Eps15
J. Biol. Chem.
2010
, vol. 
285
 (pg. 
1424
-
1434
)
31
Fallon
 
L.
Belanger
 
C. M.
Corera
 
A. T.
Kontogiannea
 
M.
Regan-Klapisz
 
E.
Moreau
 
F.
Voortman
 
J.
Haber
 
M.
Rouleau
 
G.
Thorarinsdottir
 
T.
, et al 
A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI3K–Akt signalling
Nat. Cell Biol.
2006
, vol. 
8
 (pg. 
834
-
842
)
32
Yagi
 
H.
Ishimoto
 
K.
Hiromoto
 
T.
Fujita
 
H.
Mizushima
 
T.
Uekusa
 
Y.
Yagi-Utsumi
 
M.
Kurimoto
 
E.
Noda
 
M.
Uchiyama
 
S.
, et al 
A non-canonical UBA–UBL interaction forms the linear-ubiquitin-chain assembly complex
EMBO Rep.
2012
, vol. 
13
 (pg. 
462
-
468
)
33
Hristova
 
V. A.
Beasley
 
S. A.
Rylett
 
R. J.
Shaw
 
G. S.
 
Identification of a novel Zn2+-binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin
J. Biol. Chem.
2009
, vol. 
284
 (pg. 
14978
-
14986
)
34
Trempe
 
J. F.
Sauve
 
V.
Grenier
 
K.
Seirafi
 
M.
Tang
 
M. Y.
Menade
 
M.
Al-Abdul-Wahid
 
S.
Krett
 
J.
Wong
 
K.
Kozlov
 
G.
, et al 
Structure of parkin reveals mechanisms for ubiquitin ligase activation
Science
2013
, vol. 
340
 (pg. 
1451
-
1455
)
35
Riley
 
B. E.
Lougheed
 
J. C.
Callaway
 
K.
Velasquez
 
M.
Brecht
 
E.
Nguyen
 
L.
Shaler
 
T.
Walker
 
D.
Yang
 
Y.
Regnstrom
 
K.
, et al 
Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
Nat. Commun.
2013
, vol. 
4
 pg. 
1982
 
36
Wauer
 
T.
Komander
 
D.
 
Structure of the human Parkin ligase domain in an autoinhibited state
EMBO J.
2013
, vol. 
32
 (pg. 
2099
-
2112
)
37
Kelsall
 
I. R.
Duda
 
D. M.
Olszewski
 
J. L.
Hofmann
 
K.
Knebel
 
A.
Langevin
 
F.
Wood
 
N.
Wightman
 
M.
Schulman
 
B. A.
Alpi
 
A. F.
 
TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin–RING ligase complexes
EMBO J.
2013
, vol. 
32
 (pg. 
2848
-
2860
)
38
Ikeda
 
F.
Deribe
 
Y. L.
Skanland
 
S. S.
Stieglitz
 
B.
Grabbe
 
C.
Franz-Wachtel
 
M.
van Wijk
 
S. J.
Goswami
 
P.
Nagy
 
V.
Terzic
 
J.
, et al 
SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis
Nature
2011
, vol. 
471
 (pg. 
637
-
641
)
39
Sato
 
Y.
Fujita
 
H.
Yoshikawa
 
A.
Yamashita
 
M.
Yamagata
 
A.
Kaiser
 
S. E.
Iwai
 
K.
Fukai
 
S.
 
Specific recognition of linear ubiquitin chains by the Npl4 zinc finger (NZF) domain of the HOIL-1L subunit of the linear ubiquitin chain assembly complex
Proc. Natl. Acad. Sci. U.S.A.
2011
, vol. 
108
 (pg. 
20520
-
20525
)
40
Allen
 
M. D.
Buchberger
 
A.
Bycroft
 
M.
 
The PUB domain functions as a p97 binding module in human peptide N-glycanase
J. Biol. Chem.
2006
, vol. 
281
 (pg. 
25502
-
25508
)
41
Kaustov
 
L.
Lukin
 
J.
Lemak
 
A.
Duan
 
S.
Ho
 
M.
Doherty
 
R.
Penn
 
L. Z.
Arrowsmith
 
C. H.
 
The conserved CPH domains of Cul7 and PARC are protein–protein interaction modules that bind the tetramerization domain of p53
J. Biol. Chem.
2007
, vol. 
282
 (pg. 
11300
-
11307
)
42
Duda
 
D. M.
Olszewski
 
J. L.
Schuermann
 
J. P.
Kurinov
 
I.
Miller
 
D. J.
Nourse
 
A.
Alpi
 
A. F.
Schulman
 
B. A.
 
Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an ariadne-family E3 and insights into ligation mechanism
Structure
2013
, vol. 
21
 (pg. 
1030
-
1041
)
43
Stieglitz
 
B.
Rana
 
R. R.
Koliopoulos
 
M. G.
Morris-Davies
 
A. C.
Schaeffer
 
V.
Christodoulou
 
E.
Howell
 
S.
Brown
 
N. R.
Dikic
 
I.
Rittinger
 
K.
 
Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP
Nature
2013
, vol. 
503
 (pg. 
422
-
426
)
44
Smit
 
J. J.
Monteferrario
 
D.
Noordermeer
 
S. M.
van Dijk
 
W. J.
van der Reijden
 
B. A.
Sixma
 
T. K.
 
The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension
EMBO J.
2012
, vol. 
31
 (pg. 
3833
-
3844
)
45
Stieglitz
 
B.
Morris-Davies
 
A. C.
Koliopoulos
 
M. G.
Christodoulou
 
E.
Rittinger
 
K.
 
LUBAC synthesizes linear ubiquitin chains via a thioester intermediate
EMBO Rep.
2012
, vol. 
13
 (pg. 
840
-
846
)
46
Imai
 
Y.
Soda
 
M.
Inoue
 
H.
Hattori
 
N.
Mizuno
 
Y.
Takahashi
 
R.
 
An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin
Cell
2001
, vol. 
105
 (pg. 
891
-
902
)
47
Olzmann
 
J. A.
Li
 
L.
Chudaev
 
M. V.
Chen
 
J.
Perez
 
F. A.
Palmiter
 
R. D.
Chin
 
L. S.
 
Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6
J. Cell Biol.
2007
, vol. 
178
 (pg. 
1025
-
1038
)
48
Spratt
 
D. E.
Julio Martinez-Torres
 
R.
Noh
 
Y. J.
Mercier
 
P.
Manczyk
 
N.
Barber
 
K. R.
Aguirre
 
J. D.
Burchell
 
L.
Purkiss
 
A.
Walden
 
H.
Shaw
 
G. S.
 
A molecular explanation for the recessive nature of parkin-linked Parkinson's disease
Nat. Commun.
2013
, vol. 
4
 pg. 
1983
 
49
Ziviani
 
E.
Tao
 
R. N.
Whitworth
 
A. J.
 
Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin
Proc. Natl. Acad. Sci. U.S.A.
2010
, vol. 
107
 (pg. 
5018
-
5023
)
50
Narendra
 
D.
Tanaka
 
A.
Suen
 
D. F.
Youle
 
R. J.
 
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
J. Cell Biol.
2008
, vol. 
183
 (pg. 
795
-
803
)
51
Tanaka
 
A.
Cleland
 
M. M.
Xu
 
S.
Narendra
 
D. P.
Suen
 
D. F.
Karbowski
 
M.
Youle
 
R. J.
 
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
J. Cell Biol.
2010
, vol. 
191
 (pg. 
1367
-
1380
)
52
Poole
 
A. C.
Thomas
 
R. E.
Yu
 
S.
Vincow
 
E. S.
Pallanck
 
L.
 
The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway
PLoS ONE
2010
, vol. 
5
 pg. 
e10054
 
53
Gegg
 
M. E.
Cooper
 
J. M.
Chau
 
K. Y.
Rojo
 
M.
Schapira
 
A. H.
Taanman
 
J. W.
 
Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
Hum. Mol. Genet.
2010
, vol. 
19
 (pg. 
4861
-
4870
)
54
Glauser
 
L.
Sonnay
 
S.
Stafa
 
K.
Moore
 
D. J.
 
Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1
J. Neurochem.
2011
, vol. 
118
 (pg. 
636
-
645
)
55
Lazarou
 
M.
Narendra
 
D. P.
Jin
 
S. M.
Tekle
 
E.
Banerjee
 
S.
Youle
 
R. J.
 
PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
J. Cell Biol.
2013
, vol. 
200
 (pg. 
163
-
172
)
56
Chen
 
Y.
Dorn
 
G. W.
 
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
Science
2013
, vol. 
340
 (pg. 
471
-
475
)
57
Rakovic
 
A.
Grunewald
 
A.
Kottwitz
 
J.
Bruggemann
 
N.
Pramstaller
 
P. P.
Lohmann
 
K.
Klein
 
C.
 
Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts
PLoS ONE
2011
, vol. 
6
 pg. 
e16746
 
58
Bertolin
 
G.
Ferrando-Miguel
 
R.
Jacoupy
 
M.
Traver
 
S.
Grenier
 
K.
Greene
 
A. W.
Dauphin
 
A.
Waharte
 
F.
Bayot
 
A.
Salamero
 
J.
, et al 
The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance
Autophagy
2013
, vol. 
9
 (pg. 
1801
-
1817
)
59
Zanon
 
A.
Rakovic
 
A.
Blankenburg
 
H.
Doncheva
 
N. T.
Schwienbacher
 
C.
Serafin
 
A.
Alexa
 
A.
Weichenberger
 
C. X.
Albrecht
 
M.
Klein
 
C.
, et al 
Profiling of parkin-binding partners using tandem affinity purification
PLoS ONE
2013
, vol. 
8
 pg. 
e78648
 
60
Shimura
 
H.
Schlossmacher
 
M. G.
Hattori
 
N.
Frosch
 
M. P.
Trockenbacher
 
A.
Schneider
 
R.
Mizuno
 
Y.
Kosik
 
K. S.
Selkoe
 
D. J.
 
Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson's disease
Science
2001
, vol. 
293
 (pg. 
263
-
269
)
61
Doss-Pepe
 
E. W.
Chen
 
L.
Madura
 
K.
 
α-Synuclein and parkin contribute to the assembly of ubiquitin lysine 63-linked multiubiquitin chains
J. Biol. Chem.
2005
, vol. 
280
 (pg. 
16619
-
16624
)
62
Kawahara
 
K.
Hashimoto
 
M.
Bar-On
 
P.
Ho
 
G. J.
Crews
 
L.
Mizuno
 
H.
Rockenstein
 
E.
Imam
 
S. Z.
Masliah
 
E.
 
α-Synuclein aggregates interfere with Parkin solubility and distribution: role in the pathogenesis of Parkinson disease
J. Biol. Chem.
2008
, vol. 
283
 (pg. 
6979
-
6987
)
63
Imai
 
Y.
Soda
 
M.
Hatakeyama
 
S.
Akagi
 
T.
Hashikawa
 
T.
Nakayama
 
K. I.
Takahashi
 
R.
 
CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity
Mol. Cell
2002
, vol. 
10
 (pg. 
55
-
67
)
64
Moszczynska
 
A.
Saleh
 
J.
Zhang
 
H.
Vukusic
 
B.
Lee
 
F. J.
Liu
 
F.
 
Parkin disrupts the α-synuclein/dopamine transporter interaction: consequences toward dopamine-induced toxicity
J. Mol. Neurosci.
2007
, vol. 
32
 (pg. 
217
-
227
)
65
Tokunaga
 
F.
Sakata
 
S.
Saeki
 
Y.
Satomi
 
Y.
Kirisako
 
T.
Kamei
 
K.
Nakagawa
 
T.
Kato
 
M.
Murata
 
S.
Yamaoka
 
S.
, et al 
Involvement of linear polyubiquitylation of NEMO in NF-κB activation
Nat. Cell Biol.
2009
, vol. 
11
 (pg. 
123
-
132
)
66
Haas
 
T. L.
Emmerich
 
C. H.
Gerlach
 
B.
Schmukle
 
A. C.
Cordier
 
S. M.
Rieser
 
E.
Feltham
 
R.
Vince
 
J.
Warnken
 
U.
Wenger
 
T.
, et al 
Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction
Mol. Cell
2009
, vol. 
36
 (pg. 
831
-
844
)
67
Niu
 
J.
Shi
 
Y.
Iwai
 
K.
Wu
 
Z. H.
 
LUBAC regulates NF-κB activation upon genotoxic stress by promoting linear ubiquitination of NEMO
EMBO J.
2011
, vol. 
30
 (pg. 
3741
-
3753
)
68
Kao
 
S. Y.
 
Regulation of DNA repair by parkin
Biochem. Biophys. Res. Commun.
2009
, vol. 
382
 (pg. 
321
-
325
)
69
Kao
 
S. Y.
 
DNA damage induces nuclear translocation of parkin
J. Biomed. Sci.
2009
, vol. 
16
 pg. 
67
 
70
Jiang
 
Q.
Ren
 
Y.
Feng
 
J.
 
Direct binding with histone deacetylase 6 mediates the reversible recruitment of parkin to the centrosome
J. Neurosci.
2008
, vol. 
28
 (pg. 
12993
-
13002
)
71
Hebron
 
M. L.
Lonskaya
 
I.
Sharpe
 
K.
Weerasinghe
 
P. P.
Algarzae
 
N. K.
Shekoyan
 
A. R.
Moussa
 
C. E.
 
Parkin ubiquitinates Tar-DNA binding protein-43 (TDP-43) and promotes its cytosolic accumulation via interaction with histone deacetylase 6 (HDAC6)
J. Biol. Chem.
2013
, vol. 
288
 (pg. 
4103
-
4115
)
72
Okui
 
M.
Yamaki
 
A.
Takayanagi
 
A.
Kudoh
 
J.
Shimizu
 
N.
Shimizu
 
Y.
 
Transcription factor single-minded 2 (SIM2) is ubiquitinated by the RING-IBR-RING-type E3 ubiquitin ligases
Exp. Cell Res.
2005
, vol. 
309
 (pg. 
220
-
228
)
73
He
 
B.
Minges
 
J. T.
Lee
 
L. W.
Wilson
 
E. M.
 
The FXXLF motif mediates androgen receptor-specific interactions with coregulators
J. Biol. Chem.
2002
, vol. 
277
 (pg. 
10226
-
10235
)
74
van de Wijngaart
 
D. J.
van Royen
 
M. E.
Hersmus
 
R.
Pike
 
A. C.
Houtsmuller
 
A. B.
Jenster
 
G.
Trapman
 
J.
Dubbink
 
H. J.
 
Novel FXXFF and FXXMF motifs in androgen receptor cofactors mediate high affinity and specific interactions with the ligand-binding domain
J. Biol. Chem.
2006
, vol. 
281
 (pg. 
19407
-
19416
)
75
Cho
 
P. F.
Poulin
 
F.
Cho-Park
 
Y. A.
Cho-Park
 
I. B.
Chicoine
 
J. D.
Lasko
 
P.
Sonenberg
 
N.
 
A new paradigm for translational control: inhibition via 5′–3′ mRNA tethering by Bicoid and the eIF4E cognate 4EHP
Cell
2005
, vol. 
121
 (pg. 
411
-
423
)
76
Tan
 
N. G.
Ardley
 
H. C.
Scott
 
G. B.
Rose
 
S. A.
Markham
 
A. F.
Robinson
 
P. A.
 
Human homologue of ariadne promotes the ubiquitylation of translation initiation factor 4E homologous protein, 4EHP
FEBS Lett.
2003
, vol. 
554
 (pg. 
501
-
504
)
77
Um
 
J. W.
Chung
 
K. C.
 
Functional modulation of parkin through physical interaction with SUMO-1
J. Neurosci. Res.
2006
, vol. 
84
 (pg. 
1543
-
1554
)
78
Um
 
J. W.
Min
 
D. S.
Rhim
 
H.
Kim
 
J.
Paik
 
S. R.
Chung
 
K. C.
 
Parkin ubiquitinates and promotes the degradation of RanBP2
J. Biol. Chem.
2006
, vol. 
281
 (pg. 
3595
-
3603
)
79
Sakata
 
E.
Yamaguchi
 
Y.
Kurimoto
 
E.
Kikuchi
 
J.
Yokoyama
 
S.
Yamada
 
S.
Kawahara
 
H.
Yokosawa
 
H.
Hattori
 
N.
Mizuno
 
Y.
, et al 
Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain
EMBO Rep.
2003
, vol. 
4
 (pg. 
301
-
306
)
80
Uchiki
 
T.
Kim
 
H. T.
Zhai
 
B.
Gygi
 
S. P.
Johnston
 
J. A.
O'Bryan
 
J. P.
Goldberg
 
A. L.
 
The ubiquitin-interacting motif protein, S5a, is ubiquitinated by all types of ubiquitin ligases by a mechanism different from typical substrate recognition
J. Biol. Chem.
2009
, vol. 
284
 (pg. 
12622
-
12632
)
81
Beasley
 
S. A.
Safadi
 
S. S.
Barber
 
K. R.
Shaw
 
G. S.
 
Solution structure of the E3 ligase HOIL-1 Ubl domain
Protein Sci.
2012
, vol. 
21
 (pg. 
1085
-
1092
)
82
Hampe
 
C.
Ardila-Osorio
 
H.
Fournier
 
M.
Brice
 
A.
Corti
 
O.
 
Biochemical analysis of Parkinson's disease-causing variants of Parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity
Hum. Mol. Genet.
2006
, vol. 
15
 (pg. 
2059
-
2075
)
83
Dachsel
 
J. C.
Lucking
 
C. B.
Deeg
 
S.
Schultz
 
E.
Lalowski
 
M.
Casademunt
 
E.
Corti
 
O.
Hampe
 
C.
Patenge
 
N.
Vaupel
 
K.
, et al 
Parkin interacts with the proteasome subunit α4
FEBS Lett.
2005
, vol. 
579
 (pg. 
3913
-
3919
)
84
Bae
 
S.
Jung
 
J. H.
An
 
I. S.
Kim
 
O. Y.
Lee
 
M. J.
Lee
 
J. H.
Park
 
I. C.
Lee
 
S. J.
An
 
S.
 
TRIAD1 is negatively regulated by the MDM2 E3 ligase
Oncol. Rep.
2012
, vol. 
28
 (pg. 
1924
-
1928
)
85
Inn
 
K. S.
Gack
 
M. U.
Tokunaga
 
F.
Shi
 
M.
Wong
 
L. Y.
Iwai
 
K.
Jung
 
J. U.
 
Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction
Mol. Cell
2011
, vol. 
41
 (pg. 
354
-
365
)
86
Gack
 
M. U.
Shin
 
Y. C.
Joo
 
C. H.
Urano
 
T.
Liang
 
C.
Sun
 
L.
Takeuchi
 
O.
Akira
 
S.
Chen
 
Z.
Inoue
 
S.
Jung
 
J. U.
 
TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
Nature
2007
, vol. 
446
 (pg. 
916
-
920
)
87
Rivkin
 
E.
Almeida
 
S. M.
Ceccarelli
 
D. F.
Juang
 
Y. C.
MacLean
 
T. A.
Srikumar
 
T.
Huang
 
H.
Dunham
 
W. H.
Fukumura
 
R.
Xie
 
G.
, et al 
The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis
Nature
2013
, vol. 
498
 (pg. 
318
-
324
)
88
Skaar
 
J. R.
Florens
 
L.
Tsutsumi
 
T.
Arai
 
T.
Tron
 
A.
Swanson
 
S. K.
Washburn
 
M. P.
DeCaprio
 
J. A.
 
PARC and CUL7 form atypical cullin RING ligase complexes
Cancer Res.
2007
, vol. 
67
 (pg. 
2006
-
2014
)
89
Jones
 
J.
Wu
 
K.
Yang
 
Y.
Guerrero
 
C.
Nillegoda
 
N.
Pan
 
Z. Q.
Huang
 
L.
 
A targeted proteomic analysis of the ubiquitin-like modifier nedd8 and associated proteins
J. proteome Res.
2008
, vol. 
7
 (pg. 
1274
-
1287
)
90
Smith
 
W. W.
Pei
 
Z.
Jiang
 
H.
Moore
 
D. J.
Liang
 
Y.
West
 
A. B.
Dawson
 
V. L.
Dawson
 
T. M.
Ross
 
C. A.
 
Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration
Proc. Natl. Acad. Sci. U.S.A.
2005
, vol. 
102
 (pg. 
18676
-
18681
)
91
Lim
 
M. K.
Kawamura
 
T.
Ohsawa
 
Y.
Ohtsubo
 
M.
Asakawa
 
S.
Takayanagi
 
A.
Shimizu
 
N.
 
Parkin interacts with LIM Kinase 1 and reduces its cofilin-phosphorylation activity via ubiquitination
Exp. Cell Res.
2007
, vol. 
313
 (pg. 
2858
-
2874
)
92
Fallon
 
L.
Moreau
 
F.
Croft
 
B. G.
Labib
 
N.
Gu
 
W. J.
Fon
 
E. A.
 
Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain
J. Biol. Chem.
2002
, vol. 
277
 (pg. 
486
-
491
)
93
Joch
 
M.
Ase
 
A. R.
Chen
 
C. X.
MacDonald
 
P. A.
Kontogiannea
 
M.
Corera
 
A. T.
Brice
 
A.
Seguela
 
P.
Fon
 
E. A.
 
Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels
Mol. Biol. Cell
2007
, vol. 
18
 (pg. 
3105
-
3118
)
94
Avraham
 
E.
Rott
 
R.
Liani
 
E.
Szargel
 
R.
Engelender
 
S.
 
Phosphorylation of Parkin by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and aggregation
J. Biol. Chem.
2007
, vol. 
282
 (pg. 
12842
-
12850
)
95
Rubio de la Torre
 
E.
Luzon-Toro
 
B.
Forte-Lago
 
I.
Minguez-Castellanos
 
A.
Ferrer
 
I.
Hilfiker
 
S.
 
Combined kinase inhibition modulates parkin inactivation
Hum. Mol. Genet.
2009
, vol. 
18
 (pg. 
809
-
823
)
96
Imam
 
S. Z.
Zhou
 
Q.
Yamamoto
 
A.
Valente
 
A. J.
Ali
 
S. F.
Bains
 
M.
Roberts
 
J. L.
Kahle
 
P. J.
Clark
 
R. A.
Li
 
S.
 
Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson's disease
J. Neurosci.
2011
, vol. 
31
 (pg. 
157
-
163
)
97
Ko
 
H. S.
Lee
 
Y.
Shin
 
J. H.
Karuppagounder
 
S. S.
Gadad
 
B. S.
Koleske
 
A. J.
Pletnikova
 
O.
Troncoso
 
J. C.
Dawson
 
V. L.
Dawson
 
T. M.
 
Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function
Proc. Natl. Acad. Sci. U.S.A.
2010
, vol. 
107
 (pg. 
16691
-
16696
)
98
Yamamoto
 
A.
Friedlein
 
A.
Imai
 
Y.
Takahashi
 
R.
Kahle
 
P. J.
Haass
 
C.
 
Parkin phosphorylation and modulation of its E3 ubiquitin ligase activity
J. Biol. Chem.
2005
, vol. 
280
 (pg. 
3390
-
3399
)
99
Kim
 
Y.
Park
 
J.
Kim
 
S.
Song
 
S.
Kwon
 
S. K.
Lee
 
S. H.
Kitada
 
T.
Kim
 
J. M.
Chung
 
J.
 
PINK1 controls mitochondrial localization of Parkin through direct phosphorylation
Biochem. Biophys. Res. Commun.
2008
, vol. 
377
 (pg. 
975
-
980
)
100
Kondapalli
 
C.
Kazlauskaite
 
A.
Zhang
 
N.
Woodroof
 
H. I.
Campbell
 
D. G.
Gourlay
 
R.
Burchell
 
L.
Walden
 
H.
Macartney
 
T. J.
Deak
 
M.
, et al 
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
Open Biol.
2012
, vol. 
2
 pg. 
120080
 
101
Shiba-Fukushima
 
K.
Imai
 
Y.
Yoshida
 
S.
Ishihama
 
Y.
Kanao
 
T.
Sato
 
S.
Hattori
 
N.
 
PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
Sci. Rep.
2012
, vol. 
2
 pg. 
1002
 
102
Iguchi
 
M.
Kujuro
 
Y.
Okatsu
 
K.
Koyano
 
F.
Kosako
 
H.
Kimura
 
M.
Suzuki
 
N.
Uchiyama
 
S.
Tanaka
 
K.
Matsuda
 
N.
 
Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation
J. Biol. Chem.
2013
, vol. 
288
 (pg. 
22019
-
22032
)
103
Fearns
 
C.
Pan
 
Q.
Mathison
 
J. C.
Chuang
 
T. H.
 
Triad3A regulates ubiquitination and proteasomal degradation of RIP1 following disruption of Hsp90 binding
J. Biol. Chem.
2006
, vol. 
281
 (pg. 
34592
-
34600
)
104
Bromann
 
P. A.
Weiner
 
J. A.
Apel
 
E. D.
Lewis
 
R. M.
Sanes
 
J. R.
 
A putative ariadne-like E3 ubiquitin ligase (PAUL) that interacts with the muscle-specific kinase (MuSK)
Gene Expr. Patterns
2004
, vol. 
4
 (pg. 
77
-
84
)
105
Nakamura
 
M.
Tokunaga
 
F.
Sakata
 
S.
Iwai
 
K.
 
Mutual regulation of conventional protein kinase C and a ubiquitin ligase complex
Biochem. Biophys. Res. Commun.
2006
, vol. 
351
 (pg. 
340
-
347
)
106
Chan
 
N. C.
Salazar
 
A. M.
Pham
 
A. H.
Sweredoski
 
M. J.
Kolawa
 
N. J.
Graham
 
R. L.
Hess
 
S.
Chan
 
D. C.
 
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
Hum. Mol. Genet.
2011
, vol. 
20
 (pg. 
1726
-
1737
)
107
Sarraf
 
S. A.
Raman
 
M.
Guarani-Pereira
 
V.
Sowa
 
M. E.
Huttlin
 
E. L.
Gygi
 
S. P.
Harper
 
J. W.
 
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
Nature
2013
, vol. 
496
 (pg. 
372
-
376
)
108
Cole
 
A. R.
Lewis
 
L. P.
Walden
 
H.
 
The structure of the catalytic subunit FANCL of the Fanconi anemia core complex
Nat. Struct. Mol. Biol.
2010
, vol. 
17
 (pg. 
294
-
298
)
109
Tashiro
 
M.
Okubo
 
S.
Shimotakahara
 
S.
Hatanaka
 
H.
Yasuda
 
H.
Kainosho
 
M.
Yokoyama
 
S.
Shindo
 
H.
 
NMR structure of ubiquitin-like domain in PARKIN: gene product of familial Parkinson's disease
J. Biomol. NMR
2003
, vol. 
25
 (pg. 
153
-
156
)
110
Bai
 
J. J.
Safadi
 
S. S.
Mercier
 
P.
Barber
 
K. R.
Shaw
 
G. S.
 
Ataxin-3 is a multivalent ligand for the parkin ubl domain
Biochemistry
2013
, vol. 
52
 (pg. 
7369
-
7376
)
111
Trempe
 
J. F.
Chen
 
C. X.
Grenier
 
K.
Camacho
 
E. M.
Kozlov
 
G.
McPherson
 
P. S.
Gehring
 
K.
Fon
 
E. A.
 
SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination
Mol. Cell
2009
, vol. 
36
 (pg. 
1034
-
1047
)
112
Zhang
 
D.
Raasi
 
S.
Fushman
 
D.
 
Affinity makes the difference: nonselective interaction of the UBA domain of Ubiquilin-1 with monomeric ubiquitin and polyubiquitin chains
J. Mol. Biol.
2008
, vol. 
377
 (pg. 
162
-
180
)
113
Alam
 
S. L.
Sun
 
J.
Payne
 
M.
Welch
 
B. D.
Blake
 
B. K.
Davis
 
D. R.
Meyer
 
H. H.
Emr
 
S. D.
Sundquist
 
W. I.
 
Ubiquitin interactions of NZF zinc fingers
EMBO J.
2004
, vol. 
23
 (pg. 
1411
-
1421
)
114
Ardley
 
H. C.
Tan
 
N. G.
Rose
 
S. A.
Markham
 
A. F.
Robinson
 
P. A.
 
Features of the parkin/ariadne-like ubiquitin ligase, HHARI, that regulate its interaction with the ubiquitin-conjugating enzyme, Ubch7
J. Biol. Chem
2001
, vol. 
276
 (pg. 
19640
-
19647
)
115
Regnstrom
 
K.
Yan
 
J.
Nguyen
 
L.
Callaway
 
K.
Yang
 
Y.
Diep
 
L.
Xing
 
W.
Adhikari
 
A.
Beroza
 
P.
Hom
 
R. K.
, et al 
Label free fragment screening using surface plasmon resonance as a tool for fragment finding: analyzing parkin, a difficult CNS target
PLoS ONE
2013
, vol. 
8
 pg. 
e66879
 
116
Beasley
 
S. A.
Hristova
 
V. A.
Shaw
 
G. S.
 
Structure of the Parkin in-between-ring domain provides insights for E3-ligase dysfunction in autosomal recessive Parkinson's disease
Proc. Natl. Acad. Sci. U.S.A.
2007
, vol. 
104
 (pg. 
3095
-
3100
)
117
Spratt
 
D. E.
Mercier
 
P.
Shaw
 
G. S.
 
Structure of the HHARI catalytic domain shows glimpses of a HECT E3 ligase
PLoS ONE
2013
, vol. 
8
 pg. 
e74047
 
118
Boudreaux
 
D. A.
Maiti
 
T. K.
Davies
 
C. W.
Das
 
C.
 
Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation
Proc. Natl. Acad. Sci. U.S.A.
2010
, vol. 
107
 (pg. 
9117
-
9122
)
119
Hu
 
M.
Li
 
P.
Li
 
M.
Li
 
W.
Yao
 
T.
Wu
 
J. W.
Gu
 
W.
Cohen
 
R. E.
Shi
 
Y.
 
Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde
Cell
2002
, vol. 
111
 (pg. 
1041
-
1054
)
120
Messick
 
T. E.
Russell
 
N. S.
Iwata
 
A. J.
Sarachan
 
K. L.
Shiekhattar
 
R.
Shanks
 
J. R.
Reyes-Turcu
 
F. E.
Wilkinson
 
K. D.
Marmorstein
 
R.
 
Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein
J. Biol. Chem.
2008
, vol. 
283
 (pg. 
11038
-
11049
)
121
Schlieker
 
C.
Weihofen
 
W. A.
Frijns
 
E.
Kattenhorn
 
L. M.
Gaudet
 
R.
Ploegh
 
H. L.
 
Structure of a herpesvirus-encoded cysteine protease reveals a unique class of deubiquitinating enzymes
Mol. Cell
2007
, vol. 
25
 (pg. 
677
-
687
)
122
Maspero
 
E.
Valentini
 
E.
Mari
 
S.
Cecatiello
 
V.
Soffientini
 
P.
Pasqualato
 
S.
Polo
 
S.
 
Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming
Nat. Struct. Mol. Biol.
2013
, vol. 
20
 (pg. 
696
-
701
)
123
Walden
 
H.
Martinez-Torres
 
R. J.
 
Regulation of Parkin E3 ubiquitin ligase activity
Cell. Mol. Life Sci.
2012
, vol. 
69
 (pg. 
3053
-
3067
)
124
Zheng
 
X.
Hunter
 
T.
 
Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism
Cell Res.
2013
, vol. 
23
 (pg. 
886
-
897
)
125
Matsuda
 
N.
Kitami
 
T.
Suzuki
 
T.
Mizuno
 
Y.
Hattori
 
N.
Tanaka
 
K.
 
Diverse effects of pathogenic mutations of Parkin that catalyze multiple monoubiquitylation in vitro
J. Biol. Chem.
2006
, vol. 
281
 (pg. 
3204
-
3209
)
126
Chew
 
K. C.
Matsuda
 
N.
Saisho
 
K.
Lim
 
G. G.
Chai
 
C.
Tan
 
H. M.
Tanaka
 
K.
Lim
 
K. L.
 
Parkin mediates apparent E2-independent monoubiquitination in vitro and contains an intrinsic activity that catalyzes polyubiquitination
PLoS ONE
2011
, vol. 
6
 pg. 
e19720
 
127
Tsai
 
Y. C.
Fishman
 
P. S.
Thakor
 
N. V.
Oyler
 
G. A.
 
Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function
J. Biol. Chem.
2003
, vol. 
278
 (pg. 
22044
-
22055
)
128
Yao
 
D.
Gu
 
Z.
Nakamura
 
T.
Shi
 
Z. Q.
Ma
 
Y.
Gaston
 
B.
Palmer
 
L. A.
Rockenstein
 
E. M.
Zhang
 
Z.
Masliah
 
E.
Uehara
 
T.
Lipton
 
S. A.
 
Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity
Proc. Natl. Acad. Sci. U.S.A.
2004
, vol. 
101
 (pg. 
10810
-
10814
)
129
Chung
 
K. K.
Thomas
 
B.
Li
 
X.
Pletnikova
 
O.
Troncoso
 
J. C.
Marsh
 
L.
Dawson
 
V. L.
Dawson
 
T. M.
 
S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function
Science
2004
, vol. 
304
 (pg. 
1328
-
1331
)
130
Um
 
J. W.
Han
 
K. A.
Im
 
E.
Oh
 
Y.
Lee
 
K.
Chung
 
K. C.
 
Neddylation positively regulates the ubiquitin E3 ligase activity of parkin
J. Neurosci. Res.
2012
, vol. 
90
 (pg. 
1030
-
1042
)
131
Nikolaev
 
A. Y.
Li
 
M.
Puskas
 
N.
Qin
 
J.
Gu
 
W.
 
Parc: a cytoplasmic anchor for p53
Cell
2003
, vol. 
112
 (pg. 
29
-
40
)
132
Staropoli
 
J. F.
McDermott
 
C.
Martinat
 
C.
Schulman
 
B.
Demireva
 
E.
Abeliovich
 
A.
 
Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity
Neuron
2003
, vol. 
37
 (pg. 
735
-
749
)
133
Gerlach
 
B.
Cordier
 
S. M.
Schmukle
 
A. C.
Emmerich
 
C. H.
Rieser
 
E.
Haas
 
T. L.
Webb
 
A. I.
Rickard
 
J. A.
Anderton
 
H.
Wong
 
W. W.
, et al 
Linear ubiquitination prevents inflammation and regulates immune signalling
Nature
2011
, vol. 
471
 (pg. 
591
-
596
)
134
Tokunaga
 
F.
Nakagawa
 
T.
Nakahara
 
M.
Saeki
 
Y.
Taniguchi
 
M.
Sakata
 
S.
Tanaka
 
K.
Nakano
 
H.
Iwai
 
K.
 
SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex
Nature
2011
, vol. 
471
 (pg. 
633
-
636
)
135
Muller-Rischart
 
A. K.
Pilsl
 
A.
Beaudette
 
P.
Patra
 
M.
Hadian
 
K.
Funke
 
M.
Peis
 
R.
Deinlein
 
A.
Schweimer
 
C.
Kuhn
 
P. H.
, et al 
The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO
Mol. Cell
2013
, vol. 
49
 (pg. 
908
-
921
)
136
Tomoo
 
K.
Mukai
 
Y.
In
 
Y.
Miyagawa
 
H.
Kitamura
 
K.
Yamano
 
A.
Shindo
 
H.
Ishida
 
T.
 
Crystal structure and molecular dynamics simulation of ubiquitin-like domain of murine parkin
Biochim. Biophys. Acta
2008
, vol. 
1784
 (pg. 
1059
-
1067
)
137
Martinez-Noel
 
G.
Muller
 
U.
Harbers
 
K.
 
Identification of molecular determinants required for interaction of ubiquitin-conjugating enzymes and RING finger proteins
Eur. J. Biochem.
2001
, vol. 
268
 (pg. 
5912
-
5919
)
138
Choi
 
P.
Snyder
 
H.
Petrucelli
 
L.
Theisler
 
C.
Chong
 
M.
Zhang
 
Y.
Lim
 
K.
Chung
 
K. K.
Kehoe
 
K.
D'Adamio
 
L.
, et al 
SEPT5_v2 is a parkin-binding protein
Brain Res. Mol. Brain Res.
2003
, vol. 
117
 (pg. 
179
-
189
)
139
Durcan
 
T. M.
Kontogiannea
 
M.
Thorarinsdottir
 
T.
Fallon
 
L.
Williams
 
A. J.
Djarmati
 
A.
Fantaneanu
 
T.
Paulson
 
H. L.
Fon
 
E. A.
 
The Machado–Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability
Hum. Mol. Genet.
2011
, vol. 
20
 (pg. 
141
-
154
)
140
Durcan
 
T. M.
Kontogiannea
 
M.
Bedard
 
N.
Wing
 
S. S.
Fon
 
E. A.
 
Ataxin-3 deubiquitination is coupled to Parkin ubiquitination via E2 ubiquitin-conjugating enzyme
J. Biol. Chem.
2012
, vol. 
287
 (pg. 
531
-
541
)
141
Chung
 
K. K.
Zhang
 
Y.
Lim
 
K. L.
Tanaka
 
Y.
Huang
 
H.
Gao
 
J.
Ross
 
C. A.
Dawson
 
V. L.
Dawson
 
T. M.
 
Parkin ubiquitinates the α-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease
Nat. Med.
2001
, vol. 
7
 (pg. 
1144
-
1150
)
142
Asai
 
H.
Hirano
 
M.
Kiriyama
 
T.
Ikeda
 
M.
Ueno
 
S.
 
Naturally- and experimentally-designed restorations of the Parkin gene deficit in autosomal recessive juvenile parkinsonism
Biochem. Biophys. Res. Commun.
2010
, vol. 
391
 (pg. 
800
-
805
)
143
Sato
 
S.
Chiba
 
T.
Sakata
 
E.
Kato
 
K.
Mizuno
 
Y.
Hattori
 
N.
Tanaka
 
K.
 
14–3–3η is a novel regulator of parkin ubiquitin ligase
EMBO J.
2006
, vol. 
25
 (pg. 
211
-
221
)
144
Shin
 
J. H.
Ko
 
H. S.
Kang
 
H.
Lee
 
Y.
Lee
 
Y. I.
Pletinkova
 
O.
Troconso
 
J. C.
Dawson
 
V. L.
Dawson
 
T. M.
 
PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease
Cell
2011
, vol. 
144
 (pg. 
689
-
702
)
145
Xiong
 
H.
Wang
 
D.
Chen
 
L.
Choo
 
Y. S.
Ma
 
H.
Tang
 
C.
Xia
 
K.
Jiang
 
W.
Ronai
 
Z.
Zhuang
 
X.
Zhang
 
Z.
 
Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation
J. Clin. Invest.
2009
, vol. 
119
 (pg. 
650
-
660
)
146
Sriram
 
S. R.
Li
 
X.
Ko
 
H. S.
Chung
 
K. K.
Wong
 
E.
Lim
 
K. L.
Dawson
 
V. L.
Dawson
 
T. M.
 
Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin
Hum. Mol. Genet.
2005
, vol. 
14
 (pg. 
2571
-
2586
)
147
Haskin
 
J.
Szargel
 
R.
Shani
 
V.
Mekies
 
L. N.
Rott
 
R.
Lim
 
G. G.
Lim
 
K. L.
Bandopadhyay
 
R.
Wolosker
 
H.
Engelender
 
S.
 
AF-6 is a positive modulator of the PINK1/parkin pathway and is deficient in Parkinson's disease
Hum. Mol. Genet.
2013
, vol. 
22
 (pg. 
2083
-
2096
)
148
Corti
 
O.
Hampe
 
C.
Koutnikova
 
H.
Darios
 
F.
Jacquier
 
S.
Prigent
 
A.
Robinson
 
J. C.
Pradier
 
L.
Ruberg
 
M.
Mirande
 
M.
, et al 
The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration
Hum. Mol. Genet.
2003
, vol. 
12
 (pg. 
1427
-
1437
)
149
Ko
 
H. S.
von Coelln
 
R.
Sriram
 
S. R.
Kim
 
S. W.
Chung
 
K. K.
Pletnikova
 
O.
Troncoso
 
J.
Johnson
 
B.
Saffary
 
R.
Goh
 
E. L.
, et al 
Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death
J. Neurosci.
2005
, vol. 
25
 (pg. 
7968
-
7978
)
150
Zhong
 
L.
Tan
 
Y.
Zhou
 
A.
Yu
 
Q.
Zhou
 
J.
 
RING finger ubiquitin-protein isopeptide ligase Nrdp1/FLRF regulates parkin stability and activity
J. Biol. Chem.
2005
, vol. 
280
 (pg. 
9425
-
9430
)
151
Chen
 
D.
Gao
 
F.
Li
 
B.
Wang
 
H.
Xu
 
Y.
Zhu
 
C.
Wang
 
G.
 
Parkin mono-ubiquitinates Bcl-2 and regulates autophagy
J. Biol. Chem.
2010
, vol. 
285
 (pg. 
38214
-
38223
)
152
Kalia
 
S. K.
Lee
 
S.
Smith
 
P. D.
Liu
 
L.
Crocker
 
S. J.
Thorarinsdottir
 
T. E.
Glover
 
J. R.
Fon
 
E. A.
Park
 
D. S.
Lozano
 
A. M.
 
BAG5 inhibits parkin and enhances dopaminergic neuron degeneration
Neuron
2004
, vol. 
44
 (pg. 
931
-
945
)
153
Wang
 
X.
Guo
 
J.
Jiang
 
H.
Shen
 
L.
Tang
 
B.
 
[Direct interaction between BAG5 protein and Parkin protein]
Zhong Nan Da Xue Xue Bao Yi Xue Ban
2010
, vol. 
35
 (pg. 
1156
-
1161
)
154
Rawal
 
N.
Corti
 
O.
Sacchetti
 
P.
Ardilla-Osorio
 
H.
Sehat
 
B.
Brice
 
A.
Arenas
 
E.
 
Parkin protects dopaminergic neurons from excessive Wnt/β-catenin signaling
Biochem. Biophys. Res. Commun.
2009
, vol. 
388
 (pg. 
473
-
478
)
155
Kuroda
 
Y.
Sako
 
W.
Goto
 
S.
Sawada
 
T.
Uchida
 
D.
Izumi
 
Y.
Takahashi
 
T.
Kagawa
 
N.
Matsumoto
 
M.
Matsumoto
 
M.
, et al 
Parkin interacts with Klokin1 for mitochondrial import and maintenance of membrane potential
Hum. Mol. Genet.
2012
, vol. 
21
 (pg. 
991
-
1003
)
156
Veeriah
 
S.
Taylor
 
B. S.
Meng
 
S.
Fang
 
F.
Yilmaz
 
E.
Vivanco
 
I.
Janakiraman
 
M.
Schultz
 
N.
Hanrahan
 
A. J.
Pao
 
W.
, et al 
Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies
Nat. Genet.
2010
, vol. 
42
 (pg. 
77
-
82
)
157
Moore
 
D. J.
Zhang
 
L.
Troncoso
 
J.
Lee
 
M. K.
Hattori
 
N.
Mizuno
 
Y.
Dawson
 
T. M.
Dawson
 
V. L.
 
Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress
Hum. Mol. Genet.
2005
, vol. 
14
 (pg. 
71
-
84
)
158
Chang
 
C.
Wu
 
G.
Gao
 
P.
Yang
 
L.
Liu
 
W.
Zuo
 
J.
 
Upregulated Parkin expression protects mitochondrial homeostasis in DJ-1 konckdown cells and cells overexpressing the DJ-1 L166P mutation
Mol. Cell. Biochem.
2013
, vol. 
387
 (pg. 
187
-
195
)
159
Wang
 
X.
Winter
 
D.
Ashrafi
 
G.
Schlehe
 
J.
Wong
 
Y. L.
Selkoe
 
D.
Rice
 
S.
Steen
 
J.
LaVoie
 
M. J.
Schwarz
 
T. L.
 
PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
Cell
2011
, vol. 
147
 (pg. 
893
-
906
)
160
Liu
 
S.
Sawada
 
T.
Lee
 
S.
Yu
 
W.
Silverio
 
G.
Alapatt
 
P.
Millan
 
I.
Shen
 
A.
Saxton
 
W.
Kanao
 
T.
, et al 
Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria
PLoS Genet.
2012
, vol. 
8
 pg. 
e1002537
 
161
Yang
 
H.
Zhou
 
X.
Liu
 
X.
Yang
 
L.
Chen
 
Q.
Zhao
 
D.
Zuo
 
J.
Liu
 
W.
 
Mitochondrial dysfunction induced by knockdown of mortalin is rescued by Parkin
Biochem. Biophys. Res. Commun.
2011
, vol. 
410
 (pg. 
114
-
120
)
162
Rose
 
J. M.
Novoselov
 
S. S.
Robinson
 
P. A.
Cheetham
 
M. E.
 
Molecular chaperone-mediated rescue of mitophagy by a Parkin RING1 domain mutant
Hum. Mol. Genet.
2011
, vol. 
20
 (pg. 
16
-
27
)
163
Imai
 
Y.
Soda
 
M.
Murakami
 
T.
Shoji
 
M.
Abe
 
K.
Takahashi
 
R.
 
A product of the human gene adjacent to parkin is a component of Lewy bodies and suppresses Pael receptor-induced cell death
J. Biol. Chem.
2003
, vol. 
278
 (pg. 
51901
-
51910
)
164
Um
 
J. W.
Stichel-Gunkel
 
C.
Lubbert
 
H.
Lee
 
G.
Chung
 
K. C.
 
Molecular interaction between parkin and PINK1 in mammalian neuronal cells
Mol. Cell. Neurosci.
2009
, vol. 
40
 (pg. 
421
-
432
)
165
Shiba
 
K.
Arai
 
T.
Sato
 
S.
Kubo
 
S.
Ohba
 
Y.
Mizuno
 
Y.
Hattori
 
N.
 
Parkin stabilizes PINK1 through direct interaction
Biochem. Biophys. Res. Commun.
2009
, vol. 
383
 (pg. 
331
-
335
)
166
Vives-Bauza
 
C.
Zhou
 
C.
Huang
 
Y.
Cui
 
M.
de Vries
 
R. L.
Kim
 
J.
May
 
J.
Tocilescu
 
M. A.
Liu
 
W.
Ko
 
H. S.
, et al 
PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
Proc. Natl. Acad. Sci. U.S.A.
2010
, vol. 
107
 (pg. 
378
-
383
)
167
Geisler
 
S.
Holmstrom
 
K. M.
Skujat
 
D.
Fiesel
 
F. C.
Rothfuss
 
O. C.
Kahle
 
P. J.
Springer
 
W.
 
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
Nat. Cell Biol.
2010
, vol. 
12
 (pg. 
119
-
131
)
168
Geisler
 
S.
Holmstrom
 
K. M.
Treis
 
A.
Skujat
 
D.
Weber
 
S. S.
Fiesel
 
F. C.
Kahle
 
P. J.
Springer
 
W.
 
The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations
Autophagy
2010
, vol. 
6
 (pg. 
871
-
878
)
169
Yu
 
F.
Zhou
 
J.
 
Parkin is ubiquitinated by Nrdp1 and abrogates Nrdp1-induced oxidative stress
Neurosci. Lett.
2008
, vol. 
440
 (pg. 
4
-
8
)
170
Kemeny
 
S.
Dery
 
D.
Loboda
 
Y.
Rovner
 
M.
Lev
 
T.
Zuri
 
D.
Finberg
 
J. P.
Larisch
 
S.
 
Parkin promotes degradation of the mitochondrial pro-apoptotic ARTS protein
PLoS ONE
2012
, vol. 
7
 pg. 
e38837
 
171
Huynh
 
D. P.
Scoles
 
D. R.
Nguyen
 
D.
Pulst
 
S. M.
 
The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI
Hum. Mol. Genet.
2003
, vol. 
12
 (pg. 
2587
-
2597
)
172
Yang
 
F.
Jiang
 
Q.
Zhao
 
J.
Ren
 
Y.
Sutton
 
M. D.
Feng
 
J.
 
Parkin stabilizes microtubules through strong binding mediated by three independent domains
J. Biol. Chem.
2005
, vol. 
280
 (pg. 
17154
-
17162
)
173
Ren
 
Y.
Zhao
 
J.
Feng
 
J.
 
Parkin binds to α/β tubulin and increases their ubiquitination and degradation
J. Neurosci.
2003
, vol. 
23
 (pg. 
3316
-
3324
)
174
Zhao
 
J.
Ren
 
Y.
Jiang
 
Q.
Feng
 
J.
 
Parkin is recruited to the centrosome in response to inhibition of proteasomes
J. Cell Sci.
2003
, vol. 
116
 (pg. 
4011
-
4019
)
175
Elmehdawi
 
F.
Wheway
 
G.
Szymanska
 
K.
Adams
 
M.
High
 
A. S.
Johnson
 
C. A.
Robinson
 
P. A.
 
Human homolog of Drosophila ariadne (HHARI) is a marker of cellular proliferation associated with nuclear bodies
Exp. Cell Res.
2013
, vol. 
319
 (pg. 
161
-
172
)
176
Parelkar
 
S. S.
Cadena
 
J. G.
Kim
 
C.
Wang
 
Z.
Sugal
 
R.
Bentley
 
B.
Moral
 
L.
Ardley
 
H. C.
Schwartz
 
L. M.
 
The parkin-like human homolog of Drosophila ariadne-1 (HHARI) can induce aggresome formation in mammalian cells and is immunologically detectable in Lewy bodies
J. Mol. Neurosci.
2012
, vol. 
46
 (pg. 
109
-
121
)
177
Marteijn
 
J. A.
van Emst
 
L.
Erpelinck-Verschueren
 
C. A.
Nikoloski
 
G.
Menke
 
A.
de Witte
 
T.
Lowenberg
 
B.
Jansen
 
J. H.
van der Reijden
 
B. A.
 
The E3 ubiquitin-protein ligase Triad1 inhibits clonogenic growth of primary myeloid progenitor cells
Blood
2005
, vol. 
106
 (pg. 
4114
-
4123
)
178
Marteijn
 
J. A.
van der Meer
 
L. T.
Smit
 
J. J.
Noordermeer
 
S. M.
Wissink
 
W.
Jansen
 
P.
Swarts
 
H. G.
Hibbert
 
R. G.
de Witte
 
T.
Sixma
 
T. K.
, et al 
The ubiquitin ligase Triad1 inhibits myelopoiesis through UbcH7 and Ubc13 interacting domains
Leukemia
2009
, vol. 
23
 (pg. 
1480
-
1489
)
179
Pietschmann
 
K.
Buchwald
 
M.
Muller
 
S.
Knauer
 
S. K.
Kogl
 
M.
Heinzel
 
T.
Kramer
 
O. H.
 
Differential regulation of PML–RARα stability by the ubiquitin ligases SIAH1/SIAH2 and TRIAD1
Int. J. Biochem. Cell Biol.
2012
, vol. 
44
 (pg. 
132
-
138
)
180
Marteijn
 
J. A.
van der Meer
 
L. T.
van Emst
 
L.
van Reijmersdal
 
S.
Wissink
 
W.
de Witte
 
T.
Jansen
 
J. H.
van der Reijden
 
B. A.
 
Gfi1 ubiquitination and proteasomal degradation is inhibited by the ubiquitin ligase Triad1
Blood
2007
, vol. 
110
 (pg. 
3128
-
3135
)
181
Lin
 
A. E.
Ebert
 
G.
Ow
 
Y.
Preston
 
S. P.
Toe
 
J. G.
Cooney
 
J. P.
Scott
 
H. W.
Sasaki
 
M.
Saibil
 
S. D.
Dissanayake
 
D.
, et al 
ARIH2 is essential for embryogenesis, and its hematopoietic deficiency causes lethal activation of the immune system
Nat. Immunol.
2013
, vol. 
14
 (pg. 
27
-
33
)
182
Bae
 
S.
Jung
 
J. H.
Kim
 
K.
An
 
I. S.
Kim
 
S. Y.
Lee
 
J. H.
Park
 
I. C.
Jin
 
Y. W.
Lee
 
S. J.
An
 
S.
 
TRIAD1 inhibits MDM2-mediated p53 ubiquitination and degradation
FEBS Lett.
2012
, vol. 
586
 (pg. 
3057
-
3063
)
183
Jung
 
J. H.
Lee
 
S. M.
Bae
 
S.
Lee
 
S. J.
Park
 
I. C.
Jin
 
Y. W.
Lee
 
J. H.
An
 
S.
 
Triad 1 induces apoptosis by p53 activation
FEBS Lett.
2010
, vol. 
584
 (pg. 
1565
-
1570
)
184
Skaar
 
J. R.
Arai
 
T.
DeCaprio
 
J. A.
 
Dimerization of CUL7 and PARC is not required for all CUL7 functions and mouse development
Mol. Cell Biol.
2005
, vol. 
25
 (pg. 
5579
-
5589
)
185
Pei
 
X. H.
Bai
 
F.
Li
 
Z.
Smith
 
M. D.
Whitewolf
 
G.
Jin
 
R.
Xiong
 
Y.
 
Cytoplasmic CUL9/PARC ubiquitin ligase is a tumor suppressor and promotes p53-dependent apoptosis
Cancer Res.
2011
, vol. 
71
 (pg. 
2969
-
2977
)
186
Ito
 
K.
Adachi
 
S.
Iwakami
 
R.
Yasuda
 
H.
Muto
 
Y.
Seki
 
N.
Okano
 
Y.
 
N-Terminally extended human ubiquitin-conjugating enzymes (E2s) mediate the ubiquitination of RING-finger proteins, ARA54 and RNF8
Eur. J. Biochem.
2001
, vol. 
268
 (pg. 
2725
-
2732
)
187
Kang
 
H. Y.
Yeh
 
S.
Fujimoto
 
N.
Chang
 
C.
 
Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor
J. Biol. Chem.
1999
, vol. 
274
 (pg. 
8570
-
8576
)
188
Yeh
 
S.
Kang
 
H. Y.
Miyamoto
 
H.
Nishimura
 
K.
Chang
 
H. C.
Ting
 
H. J.
Rahman
 
M.
Lin
 
H. K.
Fujimoto
 
N.
Hu
 
Y. C.
, et al 
Differential induction of androgen receptor transactivation by different androgen receptor coactivators in human prostate cancer DU145 cells
Endocrine
1999
, vol. 
11
 (pg. 
195
-
202
)
189
Miyamoto
 
H.
Rahman
 
M.
Takatera
 
H.
Kang
 
H. Y.
Yeh
 
S.
Chang
 
H. C.
Nishimura
 
K.
Fujimoto
 
N.
Chang
 
C.
 
A dominant-negative mutant of androgen receptor coregulator ARA54 inhibits androgen receptor-mediated prostate cancer growth
J. Biol. Chem.
2002
, vol. 
277
 (pg. 
4609
-
4617
)
190
Hsu
 
C. L.
Chen
 
Y. L.
Yeh
 
S.
Ting
 
H. J.
Hu
 
Y. C.
Lin
 
H.
Wang
 
X.
Chang
 
C.
 
The use of phage display technique for the isolation of androgen receptor interacting peptides with (F/W)XXL(F/W) and FXXLY new signature motifs
J. Biol. Chem.
2003
, vol. 
278
 (pg. 
23691
-
23698
)
191
Hsu
 
C. L.
Chen
 
Y. L.
Ting
 
H. J.
Lin
 
W. J.
Yang
 
Z.
Zhang
 
Y.
Wang
 
L.
Wu
 
C. T.
Chang
 
H. C.
Yeh
 
S.
, et al 
Androgen receptor (AR) NH2- and COOH-terminal interactions result in the differential influences on the AR-mediated transactivation and cell growth
Mol. Endocrinol.
2005
, vol. 
19
 (pg. 
350
-
361
)
192
Ting
 
H. J.
Bao
 
B. Y.
Hsu
 
C. L.
Lee
 
Y. F.
 
Androgen-receptor coregulators mediate the suppressive effect of androgen signals on vitamin D receptor activity
Endocrine
2005
, vol. 
26
 (pg. 
1
-
9
)
193
Hur
 
E.
Pfaff
 
S. J.
Payne
 
E. S.
Gron
 
H.
Buehrer
 
B. M.
Fletterick
 
R. J.
 
Recognition and accommodation at the androgen receptor coactivator binding interface
PLoS Biol.
2004
, vol. 
2
 pg. 
E274
 
194
van Royen
 
M. E.
Cunha
 
S. M.
Brink
 
M. C.
Mattern
 
K. A.
Nigg
 
A. L.
Dubbink
 
H. J.
Verschure
 
P. J.
Trapman
 
J.
Houtsmuller
 
A. B.
 
Compartmentalization of androgen receptor protein-protein interactions in living cells
J. Cell Biol.
2007
, vol. 
177
 (pg. 
63
-
72
)
195
Yang
 
Z.
Chang
 
Y. J.
Miyamoto
 
H.
Yeh
 
S.
Yao
 
J. L.
di Sant'Agnese
 
P. A.
Tsai
 
M. Y.
Chang
 
C.
 
Suppression of androgen receptor transactivation and prostate cancer cell growth by heterogeneous nuclear ribonucleoprotein A1 via interaction with androgen receptor coregulator ARA54
Endocrinology
2007
, vol. 
148
 (pg. 
1340
-
1349
)
196
Wu
 
B.
Piloto
 
S.
Zeng
 
W.
Hoverter
 
N. P.
Schilling
 
T. F.
Waterman
 
M. L.
 
Ring finger protein 14 is a new regulator of TCF/β-catenin-mediated transcription and colon cancer cell survival
EMBO Rep.
2013
, vol. 
14
 (pg. 
347
-
355
)
197
Chuang
 
T. H.
Ulevitch
 
R. J.
 
Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors
Nat. Immunol.
2004
, vol. 
5
 (pg. 
495
-
502
)
198
Miah
 
S. M.
Purdy
 
A. K.
Rodin
 
N. B.
MacFarlane
 
A. W. T.
Oshinsky
 
J.
Alvarez-Arias
 
D. A.
Campbell
 
K. S.
 
Ubiquitylation of an internalized killer cell Ig-like receptor by Triad3A disrupts sustained NF-κB signaling
J. Immunol.
2011
, vol. 
186
 (pg. 
2959
-
2969
)
199
Nakhaei
 
P.
Mesplede
 
T.
Solis
 
M.
Sun
 
Q.
Zhao
 
T.
Yang
 
L.
Chuang
 
T. H.
Ware
 
C. F.
Lin
 
R.
Hiscott
 
J.
 
The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation
PLoS Pathog.
2009
, vol. 
5
 pg. 
e1000650
 
200
Feng
 
F.
Davis
 
A.
Lake
 
J. A.
Carr
 
J.
Xia
 
W.
Burrell
 
C.
Li
 
P.
 
Ring finger protein ZIN interacts with human immunodeficiency virus type 1 Vif
J. Virol.
2004
, vol. 
78
 (pg. 
10574
-
10581
)
201
Kirisako
 
T.
Kamei
 
K.
Murata
 
S.
Kato
 
M.
Fukumoto
 
H.
Kanie
 
M.
Sano
 
S.
Tokunaga
 
F.
Tanaka
 
K.
Iwai
 
K.
 
A ubiquitin ligase complex assembles linear polyubiquitin chains
EMBO J.
2006
, vol. 
25
 (pg. 
4877
-
4887
)
202
Sasaki
 
Y.
Sano
 
S.
Nakahara
 
M.
Murata
 
S.
Kometani
 
K.
Aiba
 
Y.
Sakamoto
 
S.
Watanabe
 
Y.
Tanaka
 
K.
Kurosaki
 
T.
Iwai
 
K.
 
Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells
EMBO J.
2013
, vol. 
32
 (pg. 
2463
-
2476
)
203
Boisson
 
B.
Laplantine
 
E.
Prando
 
C.
Giliani
 
S.
Israelsson
 
E.
Xu
 
Z.
Abhyankar
 
A.
Israel
 
L.
Trevejo-Nunez
 
G.
Bogunovic
 
D.
, et al 
Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency
Nat. Immunol.
2012
, vol. 
13
 (pg. 
1178
-
1186
)
204
Sieber
 
S.
Lange
 
N.
Kollmorgen
 
G.
Erhardt
 
A.
Quaas
 
A.
Gontarewicz
 
A.
Sass
 
G.
Tiegs
 
G.
Kreienkamp
 
H. J.
 
Sharpin contributes to TNFα dependent NFκB activation and anti-apoptotic signalling in hepatocytes
PLoS ONE
2012
, vol. 
7
 pg. 
e29993
 
205
Keusekotten
 
K.
Elliott
 
P. R.
Glockner
 
L.
Fiil
 
B. K.
Damgaard
 
R. B.
Kulathu
 
Y.
Wauer
 
T.
Hospenthal
 
M. K.
Gyrd-Hansen
 
M.
Krappmann
 
D.
, et al 
OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin
Cell
2013
, vol. 
153
 (pg. 
1312
-
1326
)
206
Smit
 
J. J.
van Dijk
 
W. J.
El Atmioui
 
D.
Merkx
 
R.
Ovaa
 
H.
Sixma
 
T. K.
 
Target specificity of the E3 ligase LUBAC for ubiquitin and NEMO relies on different minimal requirements
J. Biol. Chem.
2013
, vol. 
288
 (pg. 
31728
-
31737
)
207
Hostager
 
B. S.
Kashiwada
 
M.
Colgan
 
J. D.
Rothman
 
P. B.
 
HOIL-1L interacting protein (HOIP) is essential for CD40 signaling
PLoS ONE
2011
, vol. 
6
 pg. 
e23061
 
208
Damgaard
 
R. B.
Nachbur
 
U.
Yabal
 
M.
Wong
 
W. W.
Fiil
 
B. K.
Kastirr
 
M.
Rieser
 
E.
Rickard
 
J. A.
Bankovacki
 
A.
Peschel
 
C.
, et al 
The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity
Mol. Cell
2012
, vol. 
46
 (pg. 
746
-
758
)
209
Fiil
 
B. K.
Damgaard
 
R. B.
Wagner
 
S. A.
Keusekotten
 
K.
Fritsch
 
M.
Bekker-Jensen
 
S.
Mailand
 
N.
Choudhary
 
C.
Komander
 
D.
Gyrd-Hansen
 
M.
 
OTULIN restricts Met1-linked ubiquitination to control innate immune signaling
Mol. Cell
2013
, vol. 
50
 (pg. 
818
-
830
)
210
Emmerich
 
C. H.
Ordureau
 
A.
Strickson
 
S.
Arthur
 
J. S.
Pedrioli
 
P. G.
Komander
 
D.
Cohen
 
P.
 
Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains
Proc. Natl. Acad. Sci. U.S.A.
2013
, vol. 
110
 (pg. 
15247
-
15252
)
211
Verhelst
 
K.
Carpentier
 
I.
Kreike
 
M.
Meloni
 
L.
Verstrepen
 
L.
Kensche
 
T.
Dikic
 
I.
Beyaert
 
R.
 
A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7
EMBO J.
2012
, vol. 
31
 (pg. 
3845
-
3855
)
212
Bayle
 
J.
Lopez
 
S.
Iwai
 
K.
Dubreuil
 
P.
De Sepulveda
 
P.
 
The E3 ubiquitin ligase HOIL-1 induces the polyubiquitination and degradation of SOCS6 associated proteins
FEBS Lett.
2006
, vol. 
580
 (pg. 
2609
-
2614
)
213
Martinez-Noel
 
G.
Niedenthal
 
R.
Tamura
 
T.
Harbers
 
K.
 
A family of structurally related RING finger proteins interacts specifically with the ubiquitin-conjugating enzyme UbcM4
FEBS Lett.
1999
, vol. 
454
 (pg. 
257
-
261
)
214
Huang
 
J.
Xu
 
L. G.
Liu
 
T.
Zhai
 
Z.
Shu
 
H. B.
 
The p53-inducible E3 ubiquitin ligase p53RFP induces p53-dependent apoptosis
FEBS Lett.
2006
, vol. 
580
 (pg. 
940
-
947
)
215
Benard
 
G.
Neutzner
 
A.
Peng
 
G.
Wang
 
C.
Livak
 
F.
Youle
 
R. J.
Karbowski
 
M.
 
IBRDC2, an IBR-type E3 ubiquitin ligase, is a regulatory factor for Bax and apoptosis activation
EMBO J.
2010
, vol. 
29
 (pg. 
1458
-
1471
)
216
Ng
 
C. C.
Arakawa
 
H.
Fukuda
 
S.
Kondoh
 
H.
Nakamura
 
Y.
 
p53RFP, a p53-inducible RING-finger protein, regulates the stability of p21WAF1
Oncogene
2003
, vol. 
22
 (pg. 
4449
-
4458
)
217
Du
 
W.
Li
 
J.
Sipple
 
J.
Chen
 
J.
Pang
 
Q.
 
Cytoplasmic FANCA–FANCC complex interacts and stabilizes the cytoplasm-dislocalized leukemic nucleophosmin protein (NPMc)
J. Biol. Chem.
2010
, vol. 
285
 (pg. 
37436
-
37444
)
218
Conforti
 
F.
Li Yang
 
A.
Cristina Piro
 
M.
Mellone
 
M.
Terrinoni
 
A.
Candi
 
E.
Tucci
 
P.
Thomas
 
G. J.
Knight
 
R. A.
Melino
 
G.
Sayan
 
B. S.
 
PIR2/Rnf144B regulates epithelial homeostasis by mediating degradation of p21(WAF1) and p63
Oncogene
2013
, vol. 
32
 (pg. 
4758
-
4765
)
219
Sayan
 
B. S.
Yang
 
A. L.
Conforti
 
F.
Tucci
 
P.
Piro
 
M. C.
Browne
 
G. J.
Agostini
 
M.
Bernardini
 
S.
Knight
 
R. A.
Mak
 
T. W.
Melino
 
G.
 
Differential control of TAp73 and ΔNp73 protein stability by the ring finger ubiquitin ligase PIR2
Proc. Natl. Acad. Sci. U.S.A.
2010
, vol. 
107
 (pg. 
12877
-
12882
)
220
Taebunpakul
 
P.
Sayan
 
B. S.
Flinterman
 
M.
Klanrit
 
P.
Gaken
 
J.
Odell
 
E. W.
Melino
 
G.
Tavassoli
 
M.
 
Apoptin induces apoptosis by changing the equilibrium between the stability of TAp73 and ΔNp73 isoforms through ubiquitin ligase PIR2
Apoptosis
2012
, vol. 
17
 (pg. 
762
-
776
)
221
Niwa
 
J.
Ishigaki
 
S.
Doyu
 
M.
Suzuki
 
T.
Tanaka
 
K.
Sobue
 
G.
 
A novel centrosomal ring-finger protein, dorfin, mediates ubiquitin ligase activity
Biochem. Biophys. Res. Commun.
2001
, vol. 
281
 (pg. 
706
-
713
)
222
Ito
 
T.
Niwa
 
J.
Hishikawa
 
N.
Ishigaki
 
S.
Doyu
 
M.
Sobue
 
G.
 
Dorfin localizes to Lewy bodies and ubiquitylates synphilin-1
J. Biol. Chem.
2003
, vol. 
278
 (pg. 
29106
-
29114
)
223
Huang
 
Y.
Niwa
 
J.
Sobue
 
G.
Breitwieser
 
G. E.
 
Calcium-sensing receptor ubiquitination and degradation mediated by the E3 ubiquitin ligase dorfin
J. Biol. Chem.
2006
, vol. 
281
 (pg. 
11610
-
11617
)
224
Niwa
 
J.
Ishigaki
 
S.
Hishikawa
 
N.
Yamamoto
 
M.
Doyu
 
M.
Murata
 
S.
Tanaka
 
K.
Taniguchi
 
N.
Sobue
 
G.
 
Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity
J. Biol. Chem.
2002
, vol. 
277
 (pg. 
36793
-
36798
)
225
Takeuchi
 
H.
Niwa
 
J.
Hishikawa
 
N.
Ishigaki
 
S.
Tanaka
 
F.
Doyu
 
M.
Sobue
 
G.
 
Dorfin prevents cell death by reducing mitochondrial localizing mutant superoxide dismutase 1 in a neuronal cell model of familial amyotrophic lateral sclerosis
J. Neurochem.
2004
, vol. 
89
 (pg. 
64
-
72
)
226
Ishigaki
 
S.
Hishikawa
 
N.
Niwa
 
J.
Iemura
 
S.
Natsume
 
T.
Hori
 
S.
Kakizuka
 
A.
Tanaka
 
K.
Sobue
 
G.
 
Physical and functional interaction between Dorfin and Valosin-containing protein that are colocalized in ubiquitylated inclusions in neurodegenerative disorders
J. Biol. Chem.
2004
, vol. 
279
 (pg. 
51376
-
51385
)
227
Ishigaki
 
S.
Niwa
 
J.
Yamada
 
S.
Takahashi
 
M.
Ito
 
T.
Sone
 
J.
Doyu
 
M.
Urano
 
F.
Sobue
 
G.
 
Dorfin–CHIP chimeric proteins potently ubiquitylate and degrade familial ALS-related mutant SOD1 proteins and reduce their cellular toxicity
Neurobiol. Dis.
2007
, vol. 
25
 (pg. 
331
-
341
)
228
Niwa
 
J.
Yamada
 
S.
Ishigaki
 
S.
Sone
 
J.
Takahashi
 
M.
Katsuno
 
M.
Tanaka
 
F.
Doyu
 
M.
Sobue
 
G.
 
Disulfide bond mediates aggregation, toxicity, and ubiquitylation of familial amyotrophic lateral sclerosis-linked mutant SOD1
J. Biol. Chem.
2007
, vol. 
282
 (pg. 
28087
-
28095
)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.