For some time now it has been known that diabetes and atherosclerosis are chronic inflammatory diseases that are closely associated with one another and often develop together. In both there is an increase in tissue-wide inflammation that is exhibited by the infiltration of immune cells into the adipose tissue and the vascular walls respectively. The monocyte/macrophage populations that are recruited in these seemingly different settings also display a high similarity by exhibiting similar phenotypes in both conditions. In the insulin resistant as well as the atherosclerotic setting there is a distinct switch in the macrophage populations present from an anti-inflammatory (M2) population to an inflammatory (M1) population, which releases cytokines and chemotactic factors with the ability to worsen the local environment and thus aggravate the situation by creating a vicious circle. However, although some discoveries suggest that preventing the development of M1 macrophages reduces inflammation and thereby aggravation of these diseases, there are currently no clear-cut opinions on how to achieve a switch from M2 to M1.

You do not currently have access to this content.