The Streptococcus pyogenes cysteine protease SpeB (streptococcal pyrogenic exotoxin B) is important for the invasive potential of the bacteria, but its production is down-regulated following systemic infection. This prompted us to investigate if SpeB potentiated the host immune response after systemic spreading. Addition of SpeB to human plasma increased plasma-mediated bacterial killing and prolonged coagulation time through the intrinsic pathway of coagulation. This effect was independent of the enzymatic activity of SpeB and was mediated by a non-covalent medium-affinity binding and modification of the serpin A1AT (α-1 antitrypsin). Consequently, addition of A1AT to plasma increased bacterial survival. Sequestration of A1AT by SpeB led to enhanced contact system activation, supported by increased bacterial growth in prekallikrein deficient plasma. In a mouse model of systemic infection, administration of SpeB reduced significantly bacterial dissemination. The findings reveal an additional layer of complexity to host–microbe interactions that may be of benefit in the treatment of severe bacterial infections.

You do not currently have access to this content.