GPCRs (G-protein-coupled receptors) exist in a spontaneous equilibrium between active and inactive conformations that are stabilized by agonists and inverse agonists respectively. Because ligand binding of agonists and inverse agonists often occurs in a competitive manner, one can assume an overlap between both binding sites. Only a few studies report mutations in GPCRs that convert receptor blockers into agonists by unknown mechanisms. Taking advantage of a genetically modified yeast strain, we screened libraries of mutant M3Rs {M3 mAChRs [muscarinic ACh (acetylcholine) receptors)]} and identified 13 mutants which could be activated by atropine (EC50 0.3–10 μM), an inverse agonist on wild-type M3R. Many of the mutations sensitizing M3R to atropine activation were located at the junction of intracellular loop 3 and helix 6, a region known to be involved in G-protein coupling. In addition to atropine, the pharmacological switch was found for other M3R blockers such as scopolamine, pirenzepine and oxybutynine. However, atropine functions as an agonist on the mutant M3R only when expressed in yeast, but not in mammalian COS-7 cells, although high-affinity ligand binding was comparable in both expression systems. Interestingly, we found that atropine still blocks carbachol-induced activation of the M3R mutants in the yeast expression system by binding at the high-affinity-binding site (Ki ∼10 nM). Our results indicate that blocker-to-agonist converting mutations enable atropine to function as both agonist and antagonist by interaction with two functionally distinct binding sites.

You do not currently have access to this content.